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Abstract 

Sjöberg, J. 2005. Arbuscular mycorrhizal fungi – Occurrence in Sweden and Interaction 
with a Plant Pathogenic Fungus in Barley. Doctoral dissertation.  
ISBN 91-576-7032-3, ISSN 1652-6880. 
 
The potential disease suppressiveness of arbuscular mycorrhizal (AM) fungi of various 
origins on Bipolaris sorokiniana in barley has been investigated. Firstly, a survey 
considering the occurrence of AM fungi in arable fields in Sweden were conducted with the 
aim to exploit site specific genetic resources in relation to disease suppressiveness. 
Arbuscular mycorrhizal fungi were present at all 45 sampling sites surveyed all over 
Sweden at densities ranging from 3 up to 44 spores per gram air dried soil. The highest 
spore density was found in a semi-natural grassland and the lowest were found in a cereal 
monoculture. The AM fungi were then multiplied in trap cultures in the greenhouse with the 
aim to use these for studying potential disease suppressiveness. Thus, the effects of the AM 
fungi trap cultures on the transmission of seed-borne B. sorokiniana in barley were 
investigated, using the trap culture inocula, but also including inocula consisting on spore 
mixtures. The arbuscular mycorrhizal fungi were able to suppress the transmission of B. 
sorokiniana in aerial parts of barley plants. The degree of suppression varied with the origin 
of the AM fungal trap cultures. The trap culture inoculum with the highest suppression of 
the B. sorokiniana transmission originated from an organically managed barley field with 
undersown ley. The two spore-inocula with the best suppression of the pathogen originated 
from fields with winter wheat and spring barley, respectively.  
 
Eventually, an in vitro method was developed for studying the effect of AM fungal 
colonisation of roots on the development of foliar diseases and the reaction of the actual 
host plant of the disease causing organism. Using the developed method, it was indicated 
that AM fungal colonisation of barley plant suppressed the development of leaf necroses 
due to B. sorokiniana. Further in vitro studies on the interaction between B. sorokiniana 
and arbuscular mycorrhizal fungi showed that B. sorokiniana decrease the germination of 
the AM fungal spores. In conclusion, AM fungi suppress the development of B. sorokiniana 
in barley. My data suggest that for biocontrol of B. sorokiniana AM fungi should be 
considered. 
 
Key words: Biocontrol, Bipolaris sorokiniana, Glomeromycota, Common root rot, Spot 
blotch 
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Svensk sammanfattning 

Bipolaris är en växtsjukdomsframkallande svamp som under svenska förhållanden i första 
hand angriper korn. Svampen sprids främst via utsäde, men det kan även finnas smitta i jord 
eller luft. Svenska försök har visat skördeförluster på närmare ett halvt ton per hektar.  
Syftet med mitt doktorandprojekt var att ta reda på om arbuskulär mykorrhizasvamp kan 
minska angrepp av bipolaris i korn. Arbuskulär mykorrhizasvamp är en svamp som enbart 
kan leva genom att samverka med växtrötter. Svampen får energi genom växtens fotosyntes 
och i gengäld hjälper svampen växten att ta upp näring. Svampen har fått sitt namn genom 
en speciell struktur som kallas ”arbuskler”. Arbusklerna är förgrenade hyfer i rötternas 
celler där näringsutbytet sker. Till att börja med inventerades arbuskulär mykorrhizasvamp i 
svensk åker- och ängsmark, därefter studerades effekten av arbuskulär mykorrhizasvamp 
från olika fält på utsädesburen bipolaris och sist gjordes en studie för att ta reda på om de 
båda svamparna har någon direkt inverkar på varandra. Arbuskulär mykorrhizasvamp fanns 
i samtliga 45 fält där jordprov togs, från Skåne i söder till Norrbotten i norr. Det visar att 
arbuskulär mykorrhiza har en stor utbredning i svensk jordbruksmark. Växthusstudier 
visade att arbuskulär mykorrhizasvamp hämmar bipolaris utveckling från utsädessmittan till 
blad och strån. Mykorrhizasvampar från olika fält var olika effektiv beträffande hämning av 
bipolaris. Mykorrhizasvampen hämmade bipolaris, trots att det var låg kolonisering av 
mykorrhizasvampen i rötterna. Det kan tyda på att bipolaris i sin tur hämmar 
mykorrhizasvampen. I laboratoriestudier visade det sig att bipolaris hämmar groning av den 
arbuskulär mykorrhizasvampens sporer. Extrakt från mykorrhizasvampen hade däremot 
ingen inverkan på groning av bipolariskonidier. Dessutom utvecklades en metod för att 
under sterila former kunna studera effekten av mykorrhizakolonisering av kornrötter på 
olika sjukdomar på bladen. Med denna metod kunde det påvisas att kolonisering av 
arbuskulär mykorrhizasvamp hämmade utvecklingen av bipolarisfläckar på bladen. För 
biologisk bekämpning av bipolaris i korn är det förmodligen möjligt att påverka 
brukningsmetoderna för att främja groning och aktivitet av de mykorrhizasvampar som har 
störst förmåga att hämma patogenen. 
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Objectives 

In this thesis I have studied the occurrence of arbuscular mycorrhizal (AM) fungi 
in arable fields in Sweden, the influence of AM fungi from different origin on 
Bipolaris sorokiniana infested barley plants and the mechanisms involved in the 
interactions. The hypothesis was that the AM fungi can inhibit the transmission of 
B. sorokiniana in barley and that these characters differ with the origin of the AM 
fungi. A second hypothesis was that the AM fungi and B. sorokiniana affect the 
germination or hyphal growth of each other in the preinfectious stage in the soil. 
To test the hypotheses field and laboratory studies have been conducted at 
different scales; from the field level occurrence of AM fungi in a country to the 
micro scale of individual fungal hyphae growing on nutrient medium in the 
laboratory. A series of studies were conducted with the aims to: 
 
� investigate the occurrence and diversity of arbuscular mycorrhizal fungi 

in arable fields in Sweden (Paper I),  
 
� investigate the influence of AM fungi from different fields on the 

transmission of seed-borne B. sorokiniana in barley (Paper II), 
 
� study the mechanisms involved in the interactions between B. 

sorokiniana, AM fungi and barley plants (Paper III). 
 
 

Introduction 

Plants are, by definition, the only higher organisms that can convert the energy of 
sunlight into stored, usable chemical energy. The farmers are a link through which 
this energy becomes food to domestic animals and humans. However, not only 
humans take advantages of this life necessity, but also fungi around the plant 
roots, among those both harmful- and beneficial organisms, influencing the quality 
and yield of the crop. The former includes the widespread plant pathogenic fungus 
Bipolaris sorokiniana that can cause disease in grasses including cereals but 
occasionally also other taxonomic groups (Wildermuth and MacNamara, 1987). 
Bipolaris sorokiniana is an important pathogen of barley in the cool climate of 
North-Western Europe (Jørgensen, 1974; Whittle, 1977; Kurppa, 1984). Only in 
Scandinavia barley (Hordeum vulgare L.) is cultivated on an area of nearly two 
million hectare (Statistics Sweden, 2004), mostly spring barley. There has been 
increasing demand for non-chemical methods of plant disease control, both from 
consumers and farmers. Extensive uses of pesticides pose a risk for pollution of 
the environment and the food, with sometimes well-known, sometimes poorly 
known consequences. The development of plant pathogen resistance to commonly 
used chemical compounds is another risk factor. An additional threat is that 
fungicides may reduce plant beneficial organisms. Beside the need of decreasing 
the use of synthetical chemicals, there is also a need for organic farmers to achieve 
tools for restricting the negative consequences of the pathogens.  
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A few studies have indicated the possibility of arbuscular mycorrhizal (AM) 
fungi to suppress B. sorokiniana in the roots (Dehn and Dehne, 1986; Thompson 
and Wildermuth, 1989). The use of AM fungi, either by adding them into the field 
or by favouring the already existing, could therefore be an interesting alternative 
or complement to restrict the pathogen.   
 
Arbuscular Mycorrhizal Fungi 
Taxonomy   
The first report that root fungi may be beneficial to plants was observed on Indian 
pipe (Kamienski, 1881). Frank (1885) named the symbiosis between fungi and 
roots “Mykorrhizen”, from the Greek meaning “fungus root”. Amongst the 
mycorrhizal associations, the AM association is the most common one. Arbuscular 
mycorrhizal fungi belong to the fungal phylum Glomeromycota (Schüßler et al., 
2001). The Glomeromycota is divided into four orders, eight families and ten 
genera. The genera which include most of the described species are Acaulospora, 
Gigaspora, Glomus and Scutellospora (Schüßler, 2005). The AM fungi obtain 
their energy through an obligate symbiosis with vascular plants; the AM, although 
non-vascular plants also are reported to form the AM (Russell and Bulman, 2005). 
The AM fungi are named by their formation of highly branched intracellular 
fungal structures or “arbuscules” which are the site of phosphate exchange 
between fungus and plant. Vesicles, which contain lipids and are carbon storage 
structures, are formed commonly in most genera of Glomeromycota, although this 
will depend on environmental conditions (Smith and Read, 1997). Gianinazzi-
Pearson (1996) pointed out that these obligatory biotrophs, the AM fungi, have a 
very broad host range, which makes them definitely different from the biotrophic 
fungal plant pathogens as well as other root symbionts.  
 

Fossil records suggest that the AM symbiosis dates back to the Ordovician age, 
460 million years ago (Redecker et al., 2000). These fossils indicate that 
Glomeromycota-like fungi may have played a critical role in facilitating the 
colonisation of land by plants. As AM fungi are obligate symbionts, they are not 
yet successfully cultured in the absence of plant root. The symbiosis is normally 
mutualistic and based on bi-directional nutrient transfer between the symbionts. 
However, the mycorrhizal association may vary along a symbiotic continuum from 
strong mutualism to antagonism (Carling and Brown, 1980; Modjo and Hendrix, 
1986; Howeler et al., 1987; Johnson et al., 1997). More than 150 species are 
described within the phylum Glomeromycota on the basis of their spore 
development and morphology, although recent molecular analyses indicate that the 
definite number of AM taxa may be much higher (Daniell et al., 2001; 
Vandenkoornhuyse, et al., 2002). However, the biological knowledge is lacking 
for some of the described species and others are synonyms (Walker and Trappe, 
1993; Walker and Vestberg, 1998). All members of the AM fungi are asexual and 
the vegetative mycelium and intraradical structures are aseptate and multinucleate. 
Most spores are between 50 and 500 µm in diameter depending on the species. 
 

Another type of mycorrhizal association is the ectomycorrhiza, in which the 
fungal hyphae form a mantle consisting of densely interwoven hyphae around the 
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root. From this mantle external hyphae grow into the surrounding soil. Hyphae 
also grow inside the root forming the Hartig net in the spaces between epidermal 
and cortex cells. In addition, to the arbuscular- and ectomycorrhiza, the 
mycorrhizal associations can be classified into four other types based on the type 
of fungus involved and the range of resulting structures produced by the root-
fungus combination (Table 1; Harley, 1959; Harley and Smith, 1983; Smith and 
Read, 1997; Read, 1998).   
 
Table 1. The diagnostic structural features of the six recognised types of mycorrhiza (after 
Read, 2002) 
 
Mycorrhiza 
Category Type Fungi Plant Defining 

structures 

Arbutoid Ascomycetes  
Basidiomycetes 

Arctostáphylos 
Arbutus 
Pýrola 

Hartig net and 
intracellular 
penetrationc 

Ecto Ascomycetes  
Basidiomycetes 

Coniferous  
and  
broadleaved  
forest trees 

Hartig net, 
mantle, 
external 
mycelial 
network 

Sheathinga 

Monotropoid Basidiomycetes 
(selected ecto fungi)

Monotropáceae Fungal pegs 

Arbuscular Glomeromycetes Most families Arbuscules  
Hyphal coils 

Ericoid Ascomycetes 
Hymenoscýphus 
Oidiodendron 

Ericáceae 
Epacridáceae 
Empetráceae 

Hyphal 
complexes  
in hair roots 

Endob 

Orchid Basidiomycetes 
Rhizoctonia  
(some ecto fungi) 

Orchidáceae Peletons 

athe root surface is sheathed in a fungal mantle, b lacking a mantle but in  which hyphae 
proliferate internally, c also seen in the subtype “ectendo” . 
 
Occurrence 
Members of more then 80% of extant vascular plant families are capable of 
forming the AM. In addition, AM fungi are widely distributed on the earth. They 
are reported from all continents; Africa (Redhead, 1977), Antarctica (Cabello, et 
al., 1994), Asia (Al-Garni and Daft, 1990; Ganesan et al., 1991), Oceanien (Hall, 
1977), North America (Walker et al., 1982; Dalpé and Aiken, 1998), South 
America (Siqueira et al., 1989; Aguilera et al., 1998; Vestberg, 1999; Caproni et 
al., 2003) as well as Europe (Land and Schönbeck, 1991; Blaszkowski, 1993; 
Vestberg, 1995; Jansa et al., 2002). Arbuscular mycorrhizal fungi colonisation of 
plants have been observed over a wide range of soil pH (Read et al., 1976), soil 
phosphate levels (Crush, 1975; Hayman et al., 1976; Jeffries et al., 1988) and 
salinity (Gerdemann, 1968). There are, however, marked differences considering 
distribution and abundance among species and strains of AM fungi in response to 
soil properties. 



 

  12

 
Colonisation 
There are three important components of the mycorrhizal root system (Figure 1); 
the root itself, the intraradical mycelium (the fungi within the root) and the 
extraradical mycelium (the fungi within the soil). Colonisation of roots by AM 
fungi can arise from spores, infected root fragments and/or hyphae . The spores 
are formed on the extraradical hyphae, but some species also may form spores 
inside the roots. Soluble exudates or extracts from the roots of host species 
stimulate the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Simplified section of mycorrhizal root and external mycelium of arbuscular 
mycorrhizal fungi as seen on the microscope. The arrows point out the fungal structures. 
 

growth and branching of mycelium growing from spores (Graham, 1982; Elias 
and Safir, 1987; Gianinazzi-Pearson et al., 1989), while the exudates from a non-
host had no effect (Gianinazzi-Pearson et al., 1989). The main hypha approaches a 
root often gives rise to a fan-shaped complex of lateral branches, which is thinner 
and may be septate, and colonisation of the root usually occur from these hyphae 
(Mosse and Hepper, 1975; Giovannetti et al., 1993a,b). Hyphal contact with the 
root is followed by adhesion and formation of swollen appressoria preceding the 
penetration (Bécard and Fortin, 1988; Giovannetti et al., 1993b). There is evidence 
that the host plant recognise the AM fungi already at this stage, which is indicated 
by regular occurrence of slight wall thickening on the epidermal cell adjacent to 
the penetrating hyphae (Garriock et al., 1989). The thickenings do not contain 
either callose or lignin and do not prevent the penetration of fungal hyphae 
through the walls (Harrison and Dixon, 1994).  

Arbuscle 

Vesicle 

Cortex (plant) 
Epidermis  
(plant) 

Intraradical mycelium  

Extraradical mycelium 
 

Spore 

Hyphae 

Root hair (plant) 

Appressorium 

Entry point 
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There are two types of mycorrhiza according to the structures of the intraradical 
mycelium; the Arum-type and the Paris-type (Gallaud, 1905). In the Arum-type 
the fungal symbiont spread in the root cortex via intercellular hyphae. Short side-
branches penetrates the cortex cells and produce arbuscules. The Arum-type is 
commonly described in fast growing root systems of crop plants.  In the Paris-type 
the hyphae develop intracellular coils and spread directly from cell to cell within 
the cortex. Arbuscules grow from these coils. Co-occurrence of Arum- and Paris-
type morphologies of AM is found in cucumber and tomato (Kubota et al., 2005). 
Arbuscules are usually relatively short-lived, at least in the Arum-type mycorrhiza 
and the hyphae are comparable long-lived (Holley and Peterson, 1979; Smith and 
Dickson, 1991). The arbuscules progressively degenerate, whilst the plant cell 
remains alive, which is a difference compared to many plant pathogenic fungi 
which cause plant cell death. For rapidly growing crop species the formation of 
arbuscules may take 2-3 days and the whole arbuscular cycle approximately seven 
days (Bevege and Bowen, 1975; Brundrett et al., 1985).  
 

The extraradical mycelium consists of two distinct types of hyphae, the runner 
hyphae and the absorbing hyphae (Friese and Allen, 1991). The runner hyphae are 
thicker and grow through the soil in search of roots. The hyphae that penetrate 
roots are initiated from runner hyphae. The absorbing hyphae also develop from 
the runner hyphae and form a network of thinner hyphae extending into the soil. 
These hyphae appear to be the component of the fungus that absorbs nutrient from 
the soil for transport to the host. Arbuscular mycorrhizal fungi can associate with 
multiple hosts, including different species (Hirrel and Gerdemann, 1979; Heap and 
Newman, 1980; Warner and Mosse, 1983; Read et al., 1985; Molina et al., 1992). 
Some mycorrhizal plants are thus probably interconnected by a common 
mycorrhizal network (Newman, 1988). This means, for example, that there is a 
movement of carbon from the root of one plant, through AM fungi, to roots of 
other plants (Francis and Read, 1984; Graves et al., 1997).   
 
Benefits for the AM symbionts 
As all mutualistic beneficial cooperations, both partners (fungi and plant) have 
advantages of the symbiosis. Carbon from the photosynthesis are used by the fungi 
and the plant make use of the extended soil volume. The AM fungi take up a 
significant fraction of all plant photosynthetically fixed carbon (Paul and Kucey, 
1981). In a field study, between 3.9 and 6.2% of the fixed carbon are shown to be 
passed through the external mycelium of the AM fungal symbiont to the 
atmosphere (Johnson et al, 2002). The fungus acquires carbon as hexose within 
the root (Shachar-Hill et al., 1995; Solaiman and Saito, 1997), but it is stored 
primarily as triacylglycerol (Cox et al., 1975; Beilby and Kidby, 1980; Beilby, 
1983; Jabaji-Hare, 1988; Gaspar et al., 1994), but also as glycogen (Bago et al., 
2003). The net movement of storage lipid is from the intraradical mycelium to the 
extraradical mycelium, although there is also substantial recirculation throughout 
the fungus (Bago et al., 2002).  
 

In return for the carbon, the mycorrhizal plant obtains nutrients such as, for 
example, inorganic phosphate via the AM fungal hyphae. The inorganic 
phosphate, as also other inorganic nutrients such as zinc, is relatively immobile in 



 

  14

the soil solution, which leads to the formation of zones depleted in inorganic 
phosphorus around the roots. This depletion zones effectively limit phosphor 
uptake in non-mycorrhizal plants. The symbiotic association with AM fungi 
allows the plant to access phosphorus beyond the depletion zone through the 
extraradical fungal hyphae, in addition to the root uptake (Pearson and Jakobsen, 
1993). Arbuscular mycorrhizal fungi also contribute to the uptake by plant of 
micronutrients, such as zinc (Thompson, 1990) and the macronutrient nitrogen, 
both inorganic and possibly also organic (George et al. 1995; Hawkins et al., 
2000; Hodge et al., 2001). In addition to the nutrient uptake activity, the 
extraradical mycelium also releases substances that cause the soil and its organic 
components to aggregate (Sutton and Shepard, 1976; Tisdall and Oades, 1979; 
Tisdall, 1991; Tisdall, 1994; Bearden and Petersen, 2000). Another impact of AM 
fungi on the plants, including agricultural crops are their ability to increase their 
tolerance to drought (Davies et al., 1993) and reduce damage caused by plant 
pathogens (Dehne, 1982; Borowicz, 2001; Whipps, 2004). Hormonal changes 
throughout the entire plant under the influence of the symbiosis have also been 
described (Allen et al., 1980; Allen et al., 1982). Under some circumstances AM 
fungi are able to decrease negative effects by heavy metals in plants (Davies et al., 
2001; Tonin et al., 2001; Rivera-Becerril et al., 2002). 
 
Agricultural impact on AM fungi  
Most of the cultivated plant species are able of forming the AM. However, the 
plant families Brassicaceae and Chenopodiaceae include species that do not 
usually form mycorrhizal symbiosis, among them sugar beet and rape (Tester et 
al., 1987). Growing these crops subsequently does not lead to any multiplying of 
AM fungi, unless there are weeds that can act as hosts (Abbot and Robson, 1991; 
Jansa et al., 2002). Mycorrhizal inoculum density also declines when soils are kept 
fallow for extensive periods of time (Black and Tinker, 1979; Thompson, 1987). 
The quantity of AM fungi in soils also differs between host species (Thompson, 
1991; Vivekanandan and Fixen, 1991). Even the preceeding crop in a crop 
rotation system affect the AM fungal spore densities in the field and thereby the 
yield of the following crop (Thompson, 1991; Karasawa et al., 2001). Oehl et al. 
(2003) found that increased land use intensity was correlated with a decrease in 
AM fungal species richness and with a preferential selection of species that 
colonised roots slowly but formed spores rapidly. To remember is also that the 
most dominant species of AM fungi may not be the most beneficial mutualists. 
Johnson et al. (1992) showed that crop monocultures selected for AM fungi that 
were inferior mutualists. Thus AM fungi may be involved in the yield decline 
often observed in continuous monocultures. It has also been indicated that AM 
fungi from fertilised soil exert a higher net carbon cost on their host than AM 
fungi from unfertilised soil (Johnson, 1993). There is not only a difference 
between crop species in the degree to which they form mycorrhiza, there is also a 
difference between cultivars of the same species. Cultivars of wheat (Azcon and 
Ocampo, 1981; Young et al., 1985; Manske, 1990) and corn (Toth et al., 1984) 
have been shown to vary in levels of colonisation by AM fungi. In barley, an 
existing degree of host specificity is also indicated by Boyetchko and Tewari 
(1995) comparing yield and AM fungal colonisation of several barley cultivars 



 

  15

inoculated with AM fungi. The degree to which cultivars are colonised by, and 
benefit from, mycorrhiza is a heritable trait selectable through plant breeding 
(Krishna et al., 1985; Kesava et al., 1990).  
 

By returning crop residues to soil the farmer might stimulate an increased 
mycorrhizal infection and spore population, which is shown in tropical forage 
systems (Saif, 1986). Disturbances such as ploughing have shown to reduce the 
functioning of AM fungi (Kabir, et al., 1997; McGonigle and Miller, 1999). 
Furthermore, application of farmyard manure is shown to increase densities of AM 
fungal spores, although this depends on the soil types (Kruckelmann, 1975; 
Harinikumar and Bagyaraj, 1989). Several studies indicate that cumulative P 
fertilisation decrease the spore density under Northern European field conditions 
(Jensen and Jakobsen, 1980; Mårtensson and Carlgren, 1994; Kahiluoto et al., 
2001). Furthermore, AM fungal colonisation are shown not to be affected by P 
addition when plants are deficient in N but, when N was sufficient, P addition 
suppress root colonisation (Sylvia and Neal, 1990). Thus, there are cultivation 
measures available for the farmer to regulate the AM fungi at the field site. An 
important measure, apart from the choice of cropping systems, and cultivation is in 
conventional agriculture the use of fungicides. Systemic fungicides applied at field 
application rate are shown to reduce the functioning of the AM fungi (Menge et 
al., 1979; Kling and Jakobsen, 1997).  

 
Plant and AM fungal diversity 
The growth of many plant species is enhanced when AM fungi are present 
(McGonigle, 1988). It has also been shown in field and greenhouse experiments 
that AM fungi promote plant diversity in European grasslands (Grime et al., 1987; 
Gange et al., 1990, Gange et al., 1993; van der Heijden et al., 1998a). However, 
AM fungi can also reduce diversity, as has been observed in American tall grass 
praries (Hartnett and Wilson, 1999). The mycorrhizal dependency (or symbiotic 
effectiveness) of a plant shows the extent to which a plant benefits from the 
presence of AM fungi compared to when it is absent (Gerdemann, 1975; 
Plenchette et al., 1983; Johnson et al., 1997; van der Heijden et al., 1998b). Van 
der Heijden (2002) proposed that the number and relative abundance of 
mycorrhizal dependent plant species in the species pool of a community can be 
used to predict how AM fungi affect communities. Furthermore, recovery of 
disturbed ecosystems may depend upon the reestablishment of mycorrhizal fungi 
(Reeves et al., 1979; Janos, 1980; Allen and Allen, 1980; Perry et al., 1989).  
 

However, not only the plants are affected by the AM fungi community, also the 
AM fungi respond to the plant diversity, as shown by comparing AM fungi 
community between plots cultivated with different number of plant species 
(Burrows and Pfleger, 2002). Species compositions of AM fungal communities 
also change during succession of abandoned arable fields (Johnson et al., 1991). 
When natural ecosystems are converted to agroecosystems the diversity of AM 
fungal communities tends to decrease, while diversity decreases as the intensity of 
agricultural inputs increases (Siqueira et al., 1989; Schenck et al., 1989; 
Sieverding, 1990). Since the species composition of AM fungal communities are 
influenced by plant species (Dodd et al., 1990; Johnson et al., 1991) this could be 
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an evidence of specificity between plants and AM fungi. Klironomos (2003) found 
a variation in response of different plant species to both different AM fungi co-
existing with the plant in the nature and to AM fungi with an other origin than the 
plants. Since isolates of AM fungi differ in their effect on plants, Johnson and 
Pfleger (1992) stressed that highly diverse community of AM fungi may be 
desirable to increase possible options for host-fungus combination. On the 
contrary, less diverse AM fungal communities may be superior if the few fungal 
species that are present are good mutualists (Sieverding, 1990).  
 
Bipolaris sorokiniana 
Taxonomy  
Bipolaris sorokiniana (Sacc. in Sorok.) Shoem. is a widespread fungus which can 
cause disease in barley, wheat and rice but also other grasses and infrequently 
other taxonomic groups (Wildermuth and MacNamara, 1987). An earlier name for 
the fungus was Helminthosporium sativum (Pamm. King and Blake), but the genus 
Helminthosporium has now been divided into Drechslera and Bipolaris (Alcorn, 
1988). The sexual stage (telemorph) of B. sorokiniana is Cochliobolus sativus (Ito 
and Kurib.). The sexual stage is mainly known from laboratory cultures, but is 
also reported from the field in Zambia (Raemaekers, 1991). Another name used 
for the asexual stage in the literature is Drechslera sorokiniana ((Sacc.) Subram. 
and Jain). The conidia are curved to straight, fusiform, to broadly ellipsoidal and 
germinate by one germ tube from each end (bipolar germination). The size of the 
conidia is 40-120 x 17-28 µm and they have 3-12 distoseptates (Figure 2) 
(Sivanesan and Holliday, 1981). The conidia are able to germinate using 
endogenous energy reserves, but are stimulated by exogenous nutrients such as 
root exudates (Nilsson et al., 1993). Fungal infection of both leaves and roots 
comprises several phases: conidia germination, formation of appressoria, 
penetration, and colonisation (Yadav, 1981; Carlson et al., 1991). Bipolaris 
sorokiniana produces toxins which interact with host membranes resulting in cell 
death and leakage of metabolites (Marrè, 1980; Harborne, 1983). The phytotoxins 
induce both chlorosis and necrosis in plant tissue (Harborne, 1983). Carlson et al. 
(1991) found that the most active and abundant phytotoxin formed was 
prehelminthosporol (C15H24O2). They found the toxin in conidia, hyphae and the 
surrounding culture medium.   
 
Diseases and dispersal 
Depending on the site of infection B. sorokiniana can cause different diseases like 
common root rot, spot blotch, seedling blight, foot rot and crown rot of wheat and 
barley (Lee, 1986). The diseases are increasingly important in barley in the cool 
climate of North-Western Europe (Jørgensen, 1974; Kurppa, 1984). Yield loss of 
up to 15% are reported (Piening, 1973; Olofsson, 1976; Stack, 1982; Kurppa, 
1985; Forsberg, 2004). Earlier they were considered mainly as serious diseases of 
warmer cereal growing regions, chiefly North America, and parts of Australia and 
New Zealand (Sivanesan and Holliday, 1981). Severe yield losses, up to 100%, 
due to B. sorokiniana occur in Bangladesh, Bolivia, Brazil, Paraguay and Zambia 
(Mehta, 1997).  
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Also from South and Southeast Asia the diseases caused by B. sorokiniana are 
reported (Saari, 1997). Of the fungal pathogens of cereal crops in  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Bipolaris sorokiniana with; a) bipolar germination of the conidia, b) conidia with 
five distoseptates as seen on the microscope, c) black shiny conidia as seen on the binocular 
microscope. 
 

Hungary, Bipolaris species have increased in importance (Bakonyi et al., 1998). 
Greenhouse experiments have shown that the pathogen can develop and induce the 
formation of leaf spots at as low temperatures as 6ºC (Dehne and Oerke, 1985). 
Symptom development, were intensified at temperatures higher than 20ºC, high 
relative humidities (>30%) and elevated light intensities (>3000 lx). However, 
incubation under temporary low light conditions accelerated senescence of leaves 
in a short time (Dehne and Oerke, 1985). 
 

Bipolaris sorokiniana is seed-borne causing primary infection, soil-borne or 
disseminated by air currents that carry them as inert particles to various distances 
and cause secondary infections (Figure 3). In the soil the conidia are able to 
remain their infectivity capacity for at least 22 months (von Ammon, 1963) and 
may infect the following crop. Infection can take place through stomata on the 
hypocotyls, from where the fungus progress to the root, shoot and coleoptile 
(Sprague, 1950). Dark brown, lenticular spots of variable size form on the young 
leaf sheaths; post emergence death may occur. Roots show brown spotting or a 
more general necrosis. Conditions for the occurrence of secondary infection of 
barley are most favourable during the late growing season, when crops are nearly 
ripe and relative humidity is high for at least part of the day (Spurr and Kiesling, 
1961).  Air-borne secondary infection may result in necrotic spots on the leaf as 
well as infection in ripening seeds (Mead, 1942; Vendrig, 1956). The fungus may 
also spread symptomless on the plant and yield losses may even occur without 
severe disease symptoms (Kurppa, 1985).  
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Control measures  
Bearing in mind the dispersal strategies of B. sorokiniana measures to control the 
diseases could be by I) avoiding the production of conidia, II) their ability to 
survive and infect in the soil, III) their ability to develop from seed-infections or 
IV) their ability to infect the green parts of the plant through the spread in the air. 
This could be done by a mixture of B. sorokiniana suppressing cultural practices. 
Kurppa (1985) found, while studying the soil-borne B. sorokiniana, that the 
inoculum density of the soil was of major importance, in terms of decreasing the 
growth of the barley plants, compared to fungal isolates or barley cultivars. The 
longer the time interval between susceptible hosts, the lower the ratings of 
common root rot (Ledingham, 1961). In crop rotations design to reduce the soil-
inoculum density of B. sorokiniana low sporulation on oilseed rape and red clover 
indicates their suitability in the rotation (Duczek et al., 1996). Bailey et al. (1992) 
found that inoculum levels and isolation frequencies of B. sorokiniana in wheat 
was reduced by reduced tillage, wheres Reis (1990) found that no tillage favored 
inoculum production by common root rot because large numbers of conidia were 
produced on host residues left on the soil surface. There are significant differences 
in the reactions of barley cultivars to the fungus, but no complete resistance has 
been shown (Duczek, 1984; Kurppa, 1985). Considering chemical treatments, the 
postemergence herbicides 2,4-D, MCPP and dicamba are shown to increase B. 
sorokiniana disease severity on Poa pratensis, a host plant resistant to the 
herbicides in the studies (Hodges, 1978, 1984). Different herbicides also increase 
the sporulation of B. sorokiniana on P. pratensis leaf tissue of all ages (Hodges, 
1992, 1994), which could influence inoculum potential of the soil and disease 
severity of a following barley crop.  
 

Considering the seed-borne diseases, hot humid air treatments of the seeds are 
shown to reduce the yield loss due to B. sorokiniana (Forsberg, 2004), but are not 
commercialised. Seed treatments based on the bacteria Pseudomonas chlororaphis 
(Cedomon®) against the pathogens caused by Drechslera sp., is available but has 
uncertain effects against B. sorokininana (Bioagri, Sweden; Olvång, 2002). The 
seed-borne disease in conventional farming is usually controlled through the use 
of chemical seed treatment (Sivanesan and Holliday, 1981). The infections from 
soil-borne inoculum, including inoculum on plant debris are difficult to control by 
chemical seed treatments. The extent of pathogens may even increase as a result of 
the treatment of seeds with fungicides (Daamen, et al., 1988, 1989).  It is possible 
that this increase is caused by the elimination of antagonistic organisms (Al-
Hashimi and Perry, 1986). Knudsen et al. (1995) found that isolates of the fungi 
Idriella bolleyi, Chaetomium sp., and Gliocladium roseum inoculated on barley 
seeds acted as antagonists towards B. sorokiniana. In a six years field study, 
treatment of barley seed with Idriella bolleyi decreased the disease symptoms 
caused by B. sorokiniana by 16% and led to an average yield increase of 4% 
(Duczek, 1997). Furthermore, I. bolleyi inoculated on barley seeds are shown to 
cause systemic induced resistance on the plants to subsequent infection with B. 
sorokiniana (Liljeroth and Bryngelson, 2002). Also bacteria have shown to reduce 
infection frequency of B. sorokiniana (Zhang and Yuen, 1999).  
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Figure 3. Disease cycle. Primary infection of a barley plant by overwintering Bipolaris 
sorokiniana in seed (A), or in the soil, either as conidia or as saprophytes on plant debris 
(a). The pathogen develop in the surviving plants with or without symptoms in the aerial 
plant parts (B) and to the roots (b). The conidia produced during the season may spread to 
different parts of other barley plants (C) or to weeds and cause a secondary infection. 
Finally, the pathogen survive to the next growing season in the seed (D) or in the soil (d). 
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In Australian fields, a decline in propagules of AM fungi during weed free 
fallow caused delayed root colonisation and poor growth of the next crop 
(Thompson, 1987). In proceeding studies Thompson and Wildermuth (1989)  
found that AM fungal colonisation of crop and pasture species was negatively 
correlated with root infection by B. sorokiniana. This indicates that AM fungi 
antagonise root infection by B. sorokiniana. However, they did not find a 
correlation between AM fungal colonisation and infection of stem bases with B. 
sorokiniana. Dehn and Dehne (1986) found a lower C. sativus (B. sorokiniana) 
infection of root tissue if the roots were already colonised by AM fungi.  
 

AM fungi in disease control   
The role of AM fungi in disease control have been studied in a number of plant 
pathogen – host species combinations. Borowicz (2001) showed that AM fungi 
reduced the detrimental effects of pathogens that extended beyond additive effects 
resulting from improved nutrition. This conclusion was made using a biometrically 
based examination (meta-analysis) of plant growth based on 22 papers considering 
the effects of AM fungi on plant-pathogen interactions. For effective control, 
inoculation of the AM fungus should generally take place prior to exposure to the 
pathogen, although there are a few exceptions known (Caron et al., 1986; St-
Arnaud et al., 1997). Several AM fungal species have been found to control soil-
borne pathogens, for example under greenhouse conditions Glomus fasciculatum 
and Gigaspora margarita are shown to decrease root rot diseases caused by 
Fusarium oxysporum f. sp. asparagi and Helicobasidium mompa in asparagus 
(Asparagus officinalis L.) (Matsubara et al., 2000; Matsubara et al., 2001) and 
Glomus clarum is shown to decrease root necroses due to Rhizoctonia solani in 
cowpea (Vigna unguiculata L.) (Abdel-Fattah and Shabana, 2002). In pasteurised 
soil AM fungi have shown to decrease the root damage caused by the root-rot 
fungus Cylindrocladium spathiphylli in bananas, although the pathogen decreased 
the intensity of AM fungal root colonisation (Declerck, et al., 2002). Newsham et 
al. (1994) found that AM fungi interact directly with root pathogens of the winter 
annual grass Vulpia ciliata, and improved fecundity by interfering with the 
negative effects of the pathogens. Results from the same study showed that the 
main benefit supplied by AM fungi to the plant was in protection from pathogen 
attack, not in phosphorus uptake. Considering foliar pathogens reports indicate 
that those are sometimes stimulated by AM symbioses (Meyer and Dehne, 1986; 
Shaul et al., 1999). However there are indications that foliar disease symptoms 
caused by a phytoplasma in tomato are reduced (Lingua et al., 2002). Studies have 
shown that some AM fungal colonisation also can increase disease incidence 
caused by soil-borne pathogens (Ross, 1972; Davis et al., 1978; Davis and Menge, 
1980). Working with potato and Rhizoctonia solani, Mark and Cassells (1996) 
showed that different levels of control of the pathogen could sometimes be found 
with the same AM fungus on different cultivars of plants.  
 
Mode of actions in biocontrol with bearing to B. sorokiniana and AM fungi 
Competition for nutrients and space occur between pathogens and other micro-
organisms (Wilson and Wisniewski, 1989; Wisniewski et al., 1989; Roberts, 1990; 
Mercier and Wilson, 1994). The importance of nutrients were also showed by 
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Droby et al. (1989), where an addition of exogenous nutrients to the interaction 
site resulted in decreased efficacy of the antagonist. With the knowledge of the 
nutrient flows in AM fungi it could be speculated that these fungi therefore are 
promising candidates for use in biocontrol. The extent to which the nutrient 
competition reduces infection may vary with the infection strategy of the pathogen 
involved. Fokkema (1971) found that the presence of pollen, highly stimulated the 
spore germination and the superficial growth of mycelium of the pathogen 
Cochliobolus sativus infection on rye leaves. This resulted in more penetration 
sites and an increase in necrotrophic leaf area. There was a positive correlation 
between the superficial mycelium density of C. sativus 2-3 days after inoculation 
and the necrotrophic leaf area. The presence of phyllosphere yeasts reduced the 
enhanced mycelium density and subsequent necrosis (Fokkema, 1973). 
Considering the competition for iron an advantage is the possible production of 
siderophores. Siderophores is a metabolic product which binds iron and facilitates 
its transport from the environment into the microbial cell. Fluorescent 
Pseudomonas spp. produces siderophores and are very efficient competitors for 
iron (Bakker et al., 1990), and competition for iron is one of the mechanisms 
responsible for soil suppressiveness to fusarium wilts (Scher and Baker, 1982; 
Lemanceau et al., 1988). There is some evidence that AM fungi may produce 
siderophores. The AM grass Hilaria jamesii, which showed greater iron uptake 
than a non-mycorrhizal control, tested positive for siderophores when bioassayed 
(Cress et al., 1986). Arbuscular mycorrhizal fungi are shown to suppress the plant 
diseases due to increased uptake of macro- and micronutrients or drought 
tolerance of the AM fungal plant. Alleviation of abiotic stress, such as decreased 
toxicity to salt and heavy metals by AM fungal colonised plants have shown to 
decrease disease in some cases (Hooker et al., 1994; Linderman, 1994; 
Karagiannidis et al., 2002). Altered root branching or root morphology due to AM 
fungal colonisation may also decrease the negative effect of plant pathogens 
(Norman et al., 1996; Fusconi et al., 1999). Between AM fungi and the pathogen 
there might also be a competition for energy derived from the photosynthesis of 
the host. This has been shown by Larsen and Bødker (2001) studying 
Aphanomyces euteiches in pea (Pisum sativum) the biomass of both the pathogen 
and the AM fungi decreased. The reduced AM fungal biomass can alter the micro-
organisms surrounding the root (Hodge, 2000; Mansfeld-Giese et al., 2002), which 
might include bacteria antagonistic to plant pathogens (Andrade et al., 1997; 
Andrade et al., 1998; Citernesi et al., 1996).  
 

Not only the rhizosphere, but also the mycorrhizosphere might favour the 
growth of micro-organisms antagonistic to plant pathogens (Filion et al., 1999; 
Norman and Hooker, 2000; Filion, et al., 2003). Soil micro-organisms influence 
AM fungal development and symbiosis establishment. Negative impacts include a 
reduction in spore germination and hyphal length in the extraradical stage, 
decreased root colonisation and a decline in the metabolic activity of the internal 
mycelium (Wyss et al., 1992; McAllister et al., 1995). There are also positive 
effects found; Azcon-Aguilar and Barea (1985) observed that colonisation of a 
plant by an AM fungus (G. mosseae) was stimulated by a strain of Pseudomonas 
sp. Gryndler and Vosatka (1996) found that Pseudomonas putida stimulated maize 
root colonisation by Glomus fistulosum, and that the dual inoculation had a 
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synergistic effect on plant growth. Similar results are observed in other studies 
(Azcon-Aguilar et al., 1986; Azcon, 1987; Linderman and Paulitz, 1990).  
 

A nearly omnipresent feature of plant-pathogen interactions is host cell death. In 
some cases the cell death occur as rapid collapse of tissue, termed the 
hypersensitive response (HR). This response accompanies “incompatible 
interactions” and leads to disease resistance. The HR is programmed genetically in 
the plant and is a consequence of new host transcription and translation (Dixon et 
al., 1994; Godiard et al., 1994). A local HR is often associated with the onset of 
systemic acquired resistance (SAR; Chester, 1933; Enyedi et al., 1992; Ryals et 
al., 1994, 1996) in distal plant tissue. Some plant responses are very quickly, 
within hours, after the induction event (Zangerl and Berenbaum, 1995).  However, 
some examples of SAR occur without this HR (Jakobek and Lindgren, 1993; van 
Loon et al., 1998). Furthermore, HR cell death is not always required to stop 
pathogen growth (Century et al., 1995; Hammond-Kosack et al., 1996). The SAR 
may also be triggered without plant cell death. On the contrary, necroses are 
equally a feature of disease symptoms during compatible interactions. The cells 
are often killed via the action of pathogen-derived toxins, which is one feature of 
B. sorokiniana (Marrè, 1980; Harborne, 1983). Necroses induced by compatible 
pathogens do induce SAR (Jenns and Kuc, 1977; Cohen and Kuc, 1981; Kuc, 
1987). Plant control the ingress of potential fungal pathogens with increased 
activity of enzymes and accumulations of cell-wall proteins associated with 
defence. The enzymes that may accumulate is, for example, those which are 
involved in enhanced phenolic metabolism (Ryder et al., 1987), or the degrading 
of fungal cell walls (Hedrick et al. 1988; Edington et al., 1991). Enhanced 
accumulations of structural protein may increase the resistance of plant cell walls 
to enzymatic degradation by a potential pathogen (Cordier et al., 1998).  
 

Plant defence-like responses to AM formation have been reported in several 
mycorrhizal systems during the initial stages of AM fungal colonisation (Spanu 
and Bonfante-Fasolo, 1988; Spanu et al., 1989). At later stages, the defence-like 
responses in AM fungal colonised roots dropped below levels in the controls with 
no added AM fungi. However, in other studies the accumulated plant-defence like 
responses remained at later stages (Harrison and Dixon, 1993, 1994; Blee and 
Anderson, 1996). Systemic suppression of AM fungi colonisation of barley roots 
already colonised by AM fungi has been indicated (Vierheilig et al., 2000). 

 
 

Material and methods 

The experimental set-ups used in the studies are summarised in Table 2, 
presenting which important factors considering barley - AM fungi - B. sorokiniana 
interactions that were included. 
 
Indigenous AM fungal spores 
To investigate the occurrence of AM fungi in Sweden, sampling sites were chosen 
on a broad range of arable fields in the country, in total 45 different sites (Paper I).  
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Table 2. Experimental set-ups 
Paper Factors studied System Design 
I II III 

Occurrence of AM fungi 
Transmission of B. sorokiniana 
Spot development on barley leafs 
Growth of barley plants 
AM fungi root colonisation 
-"- 
AM fungal spore germination 
B. sorokiniana conidia germination 
  

Field sites 
Non-sterile soil 
Gnotobioticb 

Non-sterile soil 
Non-sterile soil 
Gnotobioticb 
In vitro 
In vitro 

Field soil 
Potsa 

Bottlesc 

Potsa 

Potsa 
Bottlesc 
Petri dishes 
Petri dishes 

√ 
 
 

 
√ 
 
√ 
√ 
 
 
 

 
 
√ 
 
 
√ 
√ 
√ 

a In greenhouse; b Gnotobiotic = growth conditions in which all the living organisms are known; 
c In climate chamber. 
 
The sites included both semi-natural grassland and ploughed fields. The localities 
were situated between 55.4˚and 65.4˚ North and between 13.2˚ and 21.2˚ West. 
The highest altitude was 707 meter above sea level. The samples were taken with 
a soil drill that was pushed down to 30 cm in the soil profiles. The soil cores were 
divided in two halves for comparison of the amount of AM fungal spores at 
different depths.  All soil samples were analysed for their AM fungi spore content, 
by modification of the methods for wet sieving (Gerdemann and Nicolson, 1963) 
and centrifugation (Walker et al., 1982). The spore suspensions were then 
vacuum-filtered and the spores were counted on the filter papers under a 
compound microscope. The spores of a subset of the samples were mounted on 
microscope slides (Schenck and Péres, 1990) and identified to the level of genus 
or species. The samples chosen for determination of AM fungal diversity 
represented different agro-climatic zones and crops at the sampling time. All soils 
were also analysed for content of clay, phosphorus, nitrogen and carbon. 
 

Greenhouse experiments 
To get enough AM fungi for the greenhouse experiments the AM fungal 
populations from the field soils (Paper I) were multiplied in greenhouse using a 
mixture of plant species (Alexandrian clover, corn, leek, marigold, pea, sunflower, 
tomato, wheat and white clover), i.e. trap cultures. The mixture of plant species in 
the trap cultures did not include barley, to avoid multiplying possibly barley 
pathogens. Cores of field soil were placed onto trays containing a sand/silt  
mixture. Each tray represented a particular field. At maturity, plants were 
harvested and new seeds were sown.  All experiments include controls with no 
added AM fungi. Information about the origin of the field soil used in the trap 
cultures are seen in Papers I and II. Each trap culture have a reference number, the 
same number are used in text and Tables. 
 

A first screening survey was conducted with an aim to select for studies the 
most promising AM fungal populations with respect to their potential for reducing 
infection by B. sorokiniana in barley plants (Paper II). Soil inocula from eight 
different AM fungal trap cultures were chosen for the screening survey. The 
inocula were collected after the first generation of trap plants. Barley kernels with 
seed-borne B. sorokiniana were sawn in pots and soil inocula from the AM fungal 
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trap cultures were added. Since the AM fungal populations were added as soil 
inocula this made it possible to include all existing AM fungal species whether 
they had sporulated or not at the time for inocula collection in the trap cultures. At 
harvest the number of living plants in each pot was noted, as well as the height of 
the plants. The stem bases were cut and incubated in a moist chamber for analysis 
of B. sorokiniana.   
 

In a second experiment with soil inocula from the AM fungal trap cultures in the 
greenhouse (Paper II), AM fungal trap cultures from two different origins were 
selected from the screening survey above. The inocula were collected from the 
trap cultures after the second generation of the plants. In addition a commercial 
inoculum was included (Vaminoc®, Becker Underwood, MicroBio) all three 
combined with three levels of B. sorokiniana seed infections (54%, 72%, 95%). 
Two controls were set up, lacking AM fungi; Control 1 (based on a substrate 
treated in the same way as the AM fungal trap cultures, but with no added AM 
fungi), Control 2 (a sand/silt mixture, with no added AM fungal inoculum). Barley 
kernels with seed-borne B. sorokiniana were sawn in pots. The plants were placed 
in the greenhouse. At harvest the number of living plants in each pot was noted, as 
well as the height of the plants. The stem bases, nodes and leaf spots were placed 
in a humid chamber for analysis of B. sorokiniana.  
 

To avoid interference from other possible soil microorganisms an experiment 
was conducted with AM fungi added as spore mixtures (Paper II) from the AM 
fungal trap cultures. Arbuscular mycorrhiza fungi from one trap culture used in 
both previous experiments were chosen for the third greenhouse experiment. The 
spores were collected after the third generation of the trap plants. In addition AM 
fungi from eight other trap cultures with Swedish origins (Paper I) were chosen 
together with one commercial inoculum with in vitro cultured, surface sterile G. 
intraradices (see Paper II). The B. sorokiniana infected barley seeds were pre-
germinated. The spores were added to the roots of the seedlings in small plastic 
trays to allow close contact between the AM fungi and the roots. The plastic trays 
with seedlings were transferred to pots and the plants were grown in greenhouse. 
At harvest root pieces, stem bases, stem and leaf parts at the base of each leaf and 
leaves were placed in a humid chamber for analysis of B. sorokiniana. For AM 
fungi colonisation studies, the roots were cold-stained (after Koske and Gemma, 
1989; Grace and Stribley, 1991; Walker and Vestberg, 1994). This was found to 
be a more gentle method for the root rot affected roots compared to hot staining. 
The roots were spread onto Petri dishes and the AM fungi colonisation were 
observed under a binocular microscope and estimated as percentage of roots 
colonised. The amounts of necroses due to the pathogen were also recorded. Low 
levels of nutrients were maintained during the plant growth experiments.   
 

In vitro studies 
The mechanisms involved in the interactions between B. sorokiniana and AM 
fungi were studied in a series of experiments under sterile conditions (for details 
see Paper III). A technique was developed for studying the effect of AM fungi on 
disease development of pathogens on the host plant under gnotobiotic conditions. 



 

  25

The AM fungal species used in the experiments were G. intraradices and G. 
proliferum. The media used were 0.2% M medium (w/v. Bécard and Fortin, 1988), 
PDA (potato dextrose agar, Oxoid Ltd, 39 g per litre) and 1% water agar. In all 
experiments controls lacking the parameter (fungi, exudates filtrates) were 
included. 
 

The direct interactions between B. sorokiniana and AM fungi where studied by 
co-culturing on the same medium. The effect of possible volatile compounds 
produced by either B. sorokiniana or G. intraradices was studied by culturing the 
two organisms on one Petri dish devided from each other by a plastic slide. Effect 
of exudate filtrates of B. sorokiniana on AM fungi were studied. The exudate 
filtrates were spread on top of M medium before the AM fungal spores were 
added. Extract of G. intraradices hyphae grown on transgenic carrot roots 
(separated from the roots with a plastic slide) was also obtained and the effect on 
conidia germination of B. sorokiniana was studied. The effects were observed by 
colony-diameter of B. sorokininana, spore- or conidia germinations and hyphal 
growth of  germinated AM fungal spores. 
 

Since the AM fungi are obligate symbionts it has not been possible to grow 
these fungi in vitro until relatively resently. Mosse and Hepper (1975) reported the 
use of root organ culture to obtain typical infections with Glomus mosseae in vitro 
and Mugnier and Mosse (1987) have developed a method using Ri T-DNA 
transformed roots. The methods were developed further by Bécard and Fortin 
(1988). Since then several interaction studies have been conducted in vitro 
between AM fungi and the transgenic roots. In present work, a method was 
developed for studying the effect of an established AM fungi colonisation in non-
transgenic barley roots on the disease development of B. sorokiniana infected 
leaves in vitro (for details see Paper III). Pieces of transgenic carrot roots 
colonised with G. intraradices were inoculated in bottles with M medium. The 
AM fungi were allowed to develop a network of hyphae in the medium for six 
months, since a living hyphal network is important in initiating rapid colonisation 
in seedlings (Read, et al., 1985; Read, 1992), before the seedlings were inserted. 
The result was a rapid colonisation of the barley roots of AM fungi. Seeds of 
barley were surface sterilised (after Åström, 1990) and pre-germinated. The 
seedlings were placed in one bottle each and covered with a layer of Vermiculite 
(Askania, Göteborg, Sweden). A figure describing the experimental set-up is seen 
in Paper III; Figure 1. The bottles were placed in a growing chamber, after one 
week plugs of B. sorokiniana grown on water agar were inoculated on the barley 
leaves. When the lesions (necroses developed as a symptom of the disease 
initiated by B. sorokiniana) started to develope their lengths were measured each 
day. The roots were cold-stained (after Koske and Gemma, 1989; Grace and 
Stribley, 1991; Walker and Vestberg, 1994) and the AM fungal colonisation was 
studied under binocular microscope. 
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Results and Discussion 

The plant pathogenic fungus B. sorokiniana has the capacity to infect the host 
directly on the leaf, while air-borne, on the roots, while soil-borne or through the 
seed, while seed-borne. It is therefore important to consider the diverse infection 
strategies if aiming to develop tools for biocontrol. While earlier workers have 
shown that AM fungi are able to suppress the B. sorokiniana in the roots, there 
was a lack of information concerning the interaction in the aerial parts of the 
plants. Reports on foliar diseases have indicated that the pathogens are enhanced 
by AM fungi (Whipps, 2004). Is this the case also for the development of B. 
sorokiniana from seed infection to the aerial plant parts? It could also be 
suggested that there is a difference between isolates of AM fungi in their possible 
ability to suppress the pathogenic fungus in aerial plant parts. Having found out 
that several multiplied field populations of AM fungi suppress the B. sorokiniana 
in stems and leaves, even through the pathogen had an advantage in that it was 
seed-borne and having seen that the pathogen was suppressed although the AM 
fungal colonisation was low I wondered how do these two fungi interact within 
the soil? Being such a successful pathogen, B. sorokiniana might have a 
competition advantage in the soil against the commonly occuring AM fungi. 
Lastly, I wondered how does the AM fungi affect the air-borne B. sorokiniana 
infecting the host leaves and how is it possible to study this without any influence 
of other organisms?  
 
AM fungi occurrence 
As it was hypothesised, AM fungi differs in characters depending on their origin; 
and since there was only scarce data on AM fungi in Sweden (Mårtensson and 
Carlgren, 1994; Eriksson, 2001; Hedlund, 2002) a first step was to make a survey 
of AM fungi under various prevailing climatic/cultivation conditions. The idea 
was to cover the broad spectrum of commonly occurring agroecosystems in 
Sweden. Therefore, sampling sites were chosen in different agro-climatic zones, 
based on both climatic and soil properties (Carling and Joner, 1998). In each zone 
samples were taken from both ploughed and unploughed arable fields, i.e. semi-
natural grasslands. The ploughed fields chosen were cultivated using agricultural 
practices common for each area.  
 

Arbuscular mycorrhizal fungi were found to be present at all sampling sites in 
this study. This shows that the AM fungi and its symbiosis with plants are widely 
spread in agricultural fields in Sweden. Arbuscular mycorrhizal fungi have also 
been found in other Northern areas, although not to the same extent as reported in 
Paper I. Vestberg (1995) found AM fungi spores in half of the 266 indigenous soil 
samples taken from different parts of Finland (61-68°North). However, the 
presence of AM fungi were detected after multiplication on trap plants, thus there 
might have been AM fungi present in a higher proportion of the indigenous 
samples, although they did not form spores in the trap cultures. At even higher 
latitudes (74-80°North) in the Arctic, AM fungal spores have been found in the 
indigenous soil of 9 out of 13 collected sites, at densities between 1-3 spores per g 
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soil (Dalpé and Aiken, 1998). They took the soil samples from the rhizosphere of 
Festuca species growing in the tundra. At the sampling location in Sweden with 
the highest latitude (65.4°North), Hindersön situated on an island in the Baltic Sea, 
the spore densities was as high as 21 spores per g dry soil (Paper 1; Table 1-2). 
Overall the spore densities found ranged between 3-44 spore per g dry weight of 
soil in this study. The lowest spore density was found in a cereal monoculture, and 
the highest spore density in a semi-natural grassland. There were significantly 
more AM fungal spores in the upper half than in the lower half of the top 30 cm of 
the soil profiles. This relationship was not affected by ploughing. Other studies 
also show a decline in spore densities down the soil profiles (Jakobsen and 
Nielsen, 1983; Abbot and Robson, 1991). Multivariate statistics in terms of 
Principal Component Analysis did not show any groupings of the spore densities 
according to physical analysis, crop or agroclimatic zones of the sampling sites.  

 
Diversity and symbiotic effectiveness 
Between three and seven AM fungal spore types were found at the eight sampling 
localities in which spores were identified (Paper I). Most species belonged to 
Glomus spp., but species within Scutellospora were also found. The two samples 
with highest number of spore types originated from the two semi-natural 
grasslands, with high plant diversities, no ploughing and no addition of fertilisers. 
The six samples with lower number of spore types originated from more 
intensively managed ploughed fields, with low plant diversities. However, there 
may probably be more AM fungal species present, since all species might not have 
sporulated at the sampling time (Miller et al., 1985). For example, Glomus 
mosseae was not found in the indigenous soil samples, although this is a common 
species found in temperate climate (Vestberg, 1995). However, spores of Glomus 
mosseae type (Figure 4) were found in one of the AM fungal trap cultures of 
indigenous soils (Paper I, Table 2; trap culture no 43).  
 
 

 
Figure 4. Arbuscular mycorrhizal fungal spores in  
close resemblance with Glomus mosseae. 
 
 
 
 
 
 
 
 

 
Burrows and Pfleger (2002) also found more AM fungal species at higher plant 
diversity. Jansa et al. (2002) found that the community structure of AM fungi in 
the field soil was affected by tillage treatment, but there were no difference in AM 
fungal diversity. In an Indonesian study soil disturbance reduced the density of 
spores, species richness and the lengths of extra-radical mycelium of AM fungi 
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(Boddington and Dodd, 2000). Also in temperate zones the hyphal density of AM 
fungi is shown to be reduced by ploughing (Kabir et al., 1998). Soil disturbance 
clearly affect the AM fungi. By ploughing the soil almost every year, the AM 
fungal species that dominate is probable adapted to disturbance (Oehl et al., 2003). 
This adaptation may in turn affect the quality of the AM fungal communities. 
Consequently, it might be possible to improve the mutualistic value (symbiotic 
effectiveness) of the AM fungal communities by adjusting the agricultural 
practises. Boddington and Dodd (2000 a, b) showed that AM fungi from different 
genera respond differently not only to disturbance but also to addition of 
phosphate fertiliser. As noted by Janos (1993) symbiotic effectiveness depends on 
the interactions between “mycorrhizal plant × mycorrhizal fungus × soil 
characteristics”.  
 

Both the plant and the soil characteristics are possible to adjust by agricultural 
practices and thereby the effectiveness of the indigenous AM fungi. Plenchette 
(1983) defined the mycorrhizal dependency of a plant based on the relationship 
between dry mass of the plants inoculated with a mycorrhizal fungus and the dry 
mass of uninoculated plants. Fungal isolates within one species vary in 
mycorrhizal effectiveness. When tested on a single host plant species, different 
mycorrhizal fungus isolates can increase, decrease, or have little effect on plant 
growth (Burgess et al., 1994; Dosskey et al., 1990; Miller et al., 1985; Molina, 
1979). Van der Heijden and Kuyper (2001) in addition to plant biomass, included 
N- and P-contents of the plant to describe symbiotic effectiveness. While working 
with plant pathogens in small grain it would be possible to define the symbiotic 
effectiveness of AM fungi by the grain yield (both quantitatively and qualitatively) 
and the inhibition of the pathogen development (not only affecting the yield, but 
also the inoculum production of the pathogen). Van der Heijden and Kuyper 
(2001) found that “plant origin” and “plant origin × soil type” had a large 
interaction on the symbiotic effectiveness both for AM fungi and ectomycorrhizal 
fungi. In their study it can be noted that ectomycorrhiza fungal origin had only a 
minor effect on symbiotic effectiveness. However, since their study of the fungal 
origin was only performed with ectomycorrhizal fungi, van der Heijden and 
Kuyper (2001) proposed that this was due to the fact that spores of 
ectomycorrhizal fungi spread more efficiently than seeds. While considering the 
AM fungi this relationship is the opposite, the AM fungi with their spores solely 
produced in the soil or roots would spread much less efficiently than most plant 
seeds.  
 
AM fungi suppressiveness of B. sorokiniana 
The amount of AM fungal spores or their diversity does not tell to which extent 
the roots are colonised. More important, it does not tell what function the AM 
fungi have in the agroecosystem. One possible feature for the AM fungi is to 
reduce plant diseases. Following the extensive field survey the hypotheses was 
that the ability of AM fungi to suppress plant pathogens differed with the origin of 
the mycorrhizal fungi. By studying AM fungal populations from, for many years 
commonly cultivated, fields it is possible to identify AM fungi that can tolerate the 
impact of agriculture.  Arbuscular mycorrhizal fungi collected from arable fields 
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are therefore of value, both for the possibility to define agricultural practises 
stimulating symbiotic efficient AM fungi and for the option to use the AM fungi 
for disease suppression in practical farming.  
 

In Paper II, AM fungi originating from fields of different agro climatic zones 
and crops, investigated in Paper I, were selected for a screening, considering their 
ability to interact with B. sorokiniana. Results of the survey showed that all, but 
two, AM fungal trap culture added as soil inocula resulted in a lower development 
of B. sorokiniana from the seed to the stem bases compared to the development of 
the pathogen in the plants with no added soil inocula from AM fungal trap 
cultures. One possible reason for this seems to be the elimination of AM fungi in 
sterilised soil.  
 

Another interesting observation is the difference in inhibition between soil 
inocula from trap cultures of different origin. In the screening, AM fungi 
originating from a semi-natural grassland (Paper I; Table 2; trap culture no 29) 
indicated a beneficial effect on the germination of the B. sorokiniana-infected 
seeds and the  survival of the barley plants. This trap culture originated from the 
indigenous soil with the highest number of different AM fungal spore types (Paper 
I). Among those AM fungal species there might have been some with 
opportunistic ability to colonise the first roots emerging from the seeds or at an 
early stage in other ways favouring the survival and growth of the barley plant. In 
semi-natural grasslands there is a dense layer of roots of several species of 
perennial grasses and herbs, which always might be colonised by AM fungi. 
However, every now and then there will be gaps in the plant cover, which will 
give new opportunities for seeds and AM fungi. Under such circumstances, a 
quick colonisation by AM fungi will be an ecological advantage. Based on this 
assumption, trap culture inocula originating from this semi-natural grassland were 
therefore selected for the second study.  
 

The soil inoculum from the trap culture that gave rise to the highest percentage 
of healthy stem bases at harvest were the most disease suppressive and was also 
selected for the second experiment (Paper II; Table 2; trap culture no 41). This 
trap culture could possibly contain AM fungi to inhibit the development of B. 
sorokiniana to the stem bases. This trap culture inoculum originated from a farm 
that had been organically managed for several years, thus no chemical seed 
treatments were used inhibiting possible B. sorokiniana antagonistic AM fungi. 
The original soil was cultivated with barley with undersown ley at the sampling 
time, which might mean presence of multiplied AM fungi with a preference for 
barley. In addition, the undersown ley increase the plant diversity and thereby may 
promote a higher AM fungal diversity. However, the proportion healthy stem 
bases were also relatively high for the barley plants growing in pots inoculated 
with trap cultures originating from a barley field in the northern part of the country 
(Paper II; Table 2; soil number 6) as well as those originating from a field with ley 
in the southern part of the country (Paper II; Table 2; trap culture no 43).  
 

In the successive study soil inocula from a trap culture originating from the 
semi-natural grassland with trap culture no 29 (Paper II; Table 1) and the barley 
field with trap culture no 41 (Paper II; Table 1) gave similar results as in the 
preceeding screening; trap culture inoculum originating from the semi-natural 
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grassland resulted in more living plants and taller plants at harvest, while trap 
culture inoculum originating from the organically managed barley field resulted in 
a tendency for lower amounts of B. sorokiniana being detected on the stem bases 
(Paper II; Table 4). The trap culture inocula of native origins from Sweden were 
more efficient in inhibiting the development of B. sorokiniana, compared to the 
AM fungal commercial inoculum (Vaminoc®) included in the study (Table 5). 
This indicate that although the AM fungi might have general benefits for the crop 
production AM fungi from different origins differ in their abilities to suppress 
specific pathogens.  
 

It should however be remembered that also the commercial inoculum inhibited 
the development of B. sorokiniana upwards the barley stems (Paper II; Table 5). A 
speculation is also that the AM fungi from the semi-natural grassland might not be 
adapted to circumstances in more intensively cultivated fields, including 
ploughing. Therefore, the AM fungi originating from semi-natural grassland were 
not included in the proceeding experiment. For a third greenhouse experiment, 
using spore inocula, the AM fungi originating from the organically managed 
barley field (Paper II; Table 1; reference number 41) were used, in addition to AM 
fungi from other ploughed fields. 
 

In the soil inocula from the trap cultures, there are probably other micro 
organisms than AM fungi multiplied as well, which could have an influence on the 
pathogen and/or the plant (Alström, 1987; Åström, 1990; Knudsen et al., 1997). 
By using AM fungal spore mixture as inocula in a third experiment such 
microorganisms were avoided. Possible differences between the substrates were 
also avoided, which could have an influence of the result (e.g. substate of 
Vaminoc® and trap cultures respectively). The inocula thus contained the AM 
fungi that had sporulated at the time for inocula collection and had also managed 
to survive the storage time of six months. For the option to inoculate AM fungi 
into arable fields in the practical farming the ability of the AM fungi to remain 
viable during storage is of great value, although there is a potential for optimising 
the storage method. The spores were surface washed to reduce bacteria. The spore 
inocula thus obtained consisted of AM fungi and possible mycorrhiza associated 
bacteria (Garbaye, 1994). This is the same situation as in the arable fields, where 
the AM fungi is living in an environment surrounded by other microorganisms, 
thus the spores are never sterile on the surface in vivo. In present experiment with 
AM fungi spore inocula, the barley plants treated with AM fungi from either of the 
origin resulted in lower detection of B. sorokiniana on leaf bases, leaves and stem 
bases. Also the commercial inoculum with surface sterilised Glomus intraradices 
spores had a lower incidence of B. sorokiniana than the control, which show that 
AM fungi with no initial bacteria on the surface have an suppressive effect against 
B. sorokiniana. Multivariate statistics in terms of Principal Component Analysis 
did not show any groupings of the suppressiveness of B. sorokiniana in relation to 
physical analysis, crop or agroclimatic zones of the sites from where the trap 
cultures originated (Paper I). In the screening survey in Paper II there was a slight 
tendency for increased suppression of the pathogen with decreasing amount of 
easily available phosphorus in the indigenous soil from where the trap culture 
originated, but this was not statistically confirmed. However, the relationship 
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between the function of the AM fungal isolates and parameters describing the 
collection site is important for the understanding of the AM systems. 
 

Presented results may indicate that the AM fungi decrease the root-necroses 
caused by B. sorokiniana (Paper II), since the roots of the plants lacking AM fungi 
had the highest proportion of necroses. This is in accordance with the result of 
Dehn and Dehne (1986) who found a lower Cochliobolus sativus (B. sorokiniana) 
infection of root tissue if the roots were already colonised by AM fungi, in this 
case Glomus etunicatum. They proposed that the mechanism mediating the 
mycorrhiza-Common root rot interactions was correlated to a general change of 
host plant physiology induced by the establishment of the AM symbiosis. All three 
isolates of one AM fungal species tested were able to reduce disease intensity on 
the roots (Dehn and Dehne, 1986). Furthermore, disease intensity could be 
reduced by AM fungi in all ten varieties of wheat and barley tested, but the degree 
of resistance varied with the genotype of host and pathogen (three C. sativus 
isolates were included). However, the degree of AM fungi colonisation of barley 
root was not correlated to their inhibition of common root rot (Dehn and Dehne, 
1986).  
 

In the present study the development of B. sorokiniana in stem bases, leaf bases, 
and leaves were inhibited although the AM fungi root colonisation was low (Paper 
II). This shows that AM fungi are able to suppress the B. sorokiniana development 
in barley plants, not only in the roots as shown by Dehn and Dehne (1986), but 
also in the above ground parts of the plants were the AM fungi is not present. 
Importantly, the pathogen was suppressed although the non-AM fungal plants was 
taller, which show that non-P-mediated mechanisms may be involved. This may 
indicate SAR and in that case seem to be initiated also with a low degree of AM 
fungal colonisation, although the mechanism mediating the mycorrhiza-disease 
interactions needs further investigation. The plant inoculated with AM fungal 
spores originating from the barley seed with undersown ley (Paper II; Table 1; trap 
culture no 41) had a three times lower risk of having a leaf base or leaf infected 
with B. sorokiniana (Paper II, Table 6) compared to the control, lacking AM 
fungi. Almost all other plants inoculated with AM fungal spores from other origins 
had an even lower risk of having a leaf base or leaf spot infected with B. 
sorokiniana. The AM fungal spores giving rise to the healthiest plants, with less 
than ten times lower risk of having a leaf base or leaf infected with B. sorokiniana 
(Paper II, Table 6) originated from fields with winter-wheat and barley 
respectively (Paper II, Table 1, trap culture no 23 and 33). In an Australian study 
AM fungal colonisation of crop and pasture species was negatively correlated with 
root infection by B. sorokiniana (Thompson and Wildermuth, 1989). They 
proposed that this indicates that AM fungi antagonise root infection by B. 
sorokiniana. It seems like the pathogen is locally inhibited by the AM fungus in 
tissues already colonised by the AM fungus, but the pathogen are able to infect 
AM fungi free tissues. However, the presence of AM fungi also seem to induce a 
change of host plant physiology independent of the degree of colonisation (Dehn 
and Dehne, 1986; Paper II, Paper III). This might explain why Thompson and 
Wildermuth (1989) did not find a correlation between degree of AM fungal 
colonisation and infection of stem bases with B. sorokiniana.  
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An attempt to explain observed responses by AM fungi towards B. sorokiniana 
in the plant is by means of SAR, but can also be due to an altered nutrient status of 
the plant. However, an improved nutrient status due to AM fungal colonisation is 
often shown to be correlated to an increase in foliar diseases (Whipps, 2004). To 
be able to study the development of the necroses on the leaf of the actual host 
species, with only the AM fungi and the pathogen present an in vitro method was 
developed. For in vitro studies, of the AM fungal effect in the plant to inoculation 
of a pathogen, so far transgenic carrot roots have been used, which are normally 
resistant to the pathogen examined (Benhamou et al., 1994). The developed 
method makes it possible to analyse possible biochemical differences between 
mycorrhizal and nonmycorrhizal host plants, challenged by a pathogen. The leaf 
spots caused by B. sorokiniana were shorter on the plants inoculated with AM 
fungi, compared to the control plants, lacking AM fungi at all times (Paper III, 
Figure 2). The M-medium was chosen since this is a common growth medium for 
AM fungal cultures. By using a medium with less amount of carbon it would be 
possible to further develop this technique for studying the effect of B. sorokiniana 
or other pathogens inoculated in the roots. With M-medium the B. sorokiniana 
seem to prefer the medium and not the root. It would also be possible to use 
different levels of, for example, phosphorus in the media. A further development 
of in vitro techniques for studying the effect of AM fungi on disease development 
in different host plants or the mechanisms involved would be to grow AM fungal 
colonised plants in meristem cultures (Morel and Martin, 1952; Conger, 1981) or 
in embryo cultures (Hännig, 1904; Lange, 1969; Yeung et al., 1981). Meristem 
and embryo cultures are used for in vitro cultivation of plant pathogen free 
material. Although these techniques are probably more time consuming, than 
surface sterilising of seeds, and the survival of the plant material might be reduced 
in the initial stage, this would probably give rise to less contaminations of 
unwanted organisms in the actual experiments.    
 
Competition 

Evolutionary, plants have evolved with both the AM fungi and the pathogens 
present. Consequently, since B. sorokiniana and AM fungi live in the same 
habitats, the soil and the root, these organisms also evolved together and probably 
developed defence strategies towards each other. One strategy by the AM fungi 
seem to be the induction of SAR restricting the development of B. sorokiniana, 
although more research is needed to explore the biochemical changes and to 
exclude the possible influence of an altered nutrient status. Other strategies might 
develop in the soil, for example at the pre-infection/colonisation stage, when AM 
fungi presumably do not have the ability to gain more energy in contrast to B. 
sorokiniana with its ability to live saprophytically. Aiming to develop tools for 
biocontrol, it is desirable to identify the interactions between the pathogen and the 
potential biocontrol agent. The observation from this study that there was a low 
AM fungal colonisation in the roots of the barley plants naturally infected with 
seed-borne B. sorokiniana (Paper II) led to the suspicion that B. sorokiniana might 
as well inhibit the AM fungi. Therefore, a series of in vitro studies were 
conducted. In addition, the possible direct inhibition of B. sorokiniana conidia 
germination by exudate filtrates of AM fungal extraradical mycelium were 
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examined (Paper III). Roots produce a huge array of organic chemicals of which 
are released to the surrounding soil (Rovira, 1969; Whitfield et al., 1981; Curl and 
Truelove, 1986). The compounds that are released by roots were classified by 
Rovira and Daveys (1974) according to their mobility in soil; 1) diffusible-water 
soluble, 2) diffusible-volatile and 3) non-diffusible compounds. The efficacy of 
volatile compounds as messengers in soil is well documented (Stotzky and 
Schenck, 1976). The germination and hyphal growth of AM fungal spores are also 
influenced by different compounds released by soil micro-organisms (Mc Allister 
et al., 1996; Paper III). Paper III showed that AM fungal spore germination are 
reduced by the presence both of B. sorokiniana growing on the same medium, or 
by its exudate filtrates or volatile compounds released by the plant pathogen while 
growing in nutrient rich medium. However, the possible volatile compounds did 
not affect AM spore germination when the plant pathogen was growing in nutrient 
deficient medium.  
 

In practical farming this might mean that less nutrient near the germinating seed 
promote the AM fungal spore germination in the presence of soil-borne B. 
sorokiniana. The presence of exudate filtrates of B. sorokiniana inhibited the 
Glomus intraradices spore germination day 4-8. Later there were no inhibition, 
which might be due to the fact that the exudate had diffused down in the media. 
Different AM fungal species, or even different isolates of AM fungal species 
might however react differently towards B. sorokiniana and the reaction in 
laboratory might not be the same as in the field. However Paper III shows that 
exudate filtrates of B. sorokiniana inhibit not only G. intraradices, but also G. 
proliferum and this inhibition proceded at least until day 19.  For statistical 
reasons, the hyphal growth of the germinated spores were divided in two 
categories, those that only grow a short distance and those that went on growing 
and branching. The statistical analyses thus did not show any difference in hyphal 
growth for the B. sorokiniana treated AM fungal spores and the control (which 
was not treated with B. sorokiniana) in any of the experiments. However, there 
might still have been differences in hyphal growth in a smaller scale (length of 
hyphae at different time intervals). For further comparisons of the hyphal growth a 
higher number of germinated AM fungal spores have to be analysed. 
 

The conidia germination of B. sorokiniana does not seem to be affected by 
exudate filtrates of AM fungi to any great extent (Paper III; Table 4). However, 
the direct interaction between B. sorokiniana and a developed AM fungal hyphal 
network connected to living roots need to be examined as well as the ability of 
AM fungi, with ability to suppress B. sorokiniana, to suppress other pathogens. 
Development of methods for favouring the germination and establishment of AM 
fungi on the barley seedlings in the field to prevent infection by air-, seed- or soil-
borne infections and/or transmission of pathogens is crucial.  The pathogens 
provide all the signals that the plant has evolved to react to in terms of defences. 
However, the pathogen cause some level of economic loss to the crop. Arbuscular 
mycorrhizal fungi also evolved with the plant. Studies show that AM fungi induce 
defence mechanisms in the plant towards certain pathogens under some growing 
conditions (Cordier, et al., 1998; Paper II; Paper III). In contrast to the pathogen 
the AM fungi often not even cause trivial or unmeasurable levels of damage to the 
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crop, but actually also give several other benefits to the plant, like increase the 
phosphorus uptake and the resistance towards B. sorokiniana.  
 

By identifying circumstances when the AM fungi best protect the crop against 
pathogens, tools will be available to exploit the AM fungi. There are several 
possibilities by using the AM fungi to reduce the loss in quality and quantity of the 
yield due to the pathogens caused by B. sorokininan. One option might be to 
introduce an alien AM fungi, which have been selected in screenings to have a 
high level of suppression ability of the pathogen, to the field. Due to the obligate 
biotrophic nature of the AM fungi they are relatively costly to multiply. In 
addition, it might be difficult to predict the activity of the specific AM fungi 
introduced, since soil biological parameters vary substantially. A better option 
might be to elaborate the cultivation practises to promote the mutualistic value of 
the AM fungal communities already existing. In addition, this could be combined 
with the addition of saprophytic bacteria or fungi acting by other modes of action 
against the pathogen than the AM fungi. This might give synergistic effects.  
 
 

Conclusions 

With this work I have been able to conclude that; 
 
� arbuscular mycorrhizal fungi are present in a wide range of arable fields 

in Sweden, at the 45 sampling sites the AM fungal spore densities varied 
from 3 up to 44 spores per gram air dried soil,  

 
� arbuscular mycorrhiza fungal trap cultures, pure G. intraradices and 

unsterilised spore-mixtures of arbuscular mycorrhizal fungi are able to 
suppress the development of seed-borne B. sorokiniana in barley. The 
degree of suppression of the development of B. sorokiniana varies with 
the origin of arbuscular mycorrhiza fungal trap cultures and unsterilised 
spore-mixtures of arbuscular mycorrhizal fungi, 

 
� in vitro studies showed that Bipolaris sorokiniana decrease spore 

germination of AM fungal species, 
 
� in vitro studies indicate that presence of AM fungi decrease the lesion 

development of the leaf due to inoculation of B. sorokiniana, 
 
� by using the developed in vitro host plant method it will be possible to 

study the impact of AM fungi on the development of plant foliar diseases. 
 
Thus, it is a clear potential for using AM fungi in crop production, not only to 
promote crop growth in general, but also specifically to suppress diseases caused 
by B. sorokiniana.   
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Abbreviations 

AM fungi    Arbuscular mycorrhizal fungi 
HR       Hypersensitive response  
SAR      Systemic Aquired Resistance 
 
 

Glossary of useful terms 

Antagonism     the inhibitory action of one species on another 
Arbuscule  complex branched treelike, hyphal systems within the cell of 

the plant root 
Biotroph  an organism that can live and multiply on another living 

organism 
Chlorosis   yellowing of normally green tissue due to chlorophyll 

destruction or failure of chlorophyll formation 
Conidia      non-motile, asexual spores 
Cotyledon  the first leaf or leaves of a seed plant, found in the embryo, and 

which may form the first photosynthetic leaves or may remain 
below ground 

Distoseptates  individual cells each surrounded by a sac-like wall distinct 
from the outer wall  

Fungal pegs  penetration of plant epidermal cells by individual hyphal 
“pegs” in monotropoid mycorrhiza 

Fungicide     a compound toxic to fungi 
Gnotobiotics  the study of organisms or species when other organisms or 

species are absent 
Herbicide     a compound toxic to plants 
Hypha  tubular filament that is the structural growth unit of filamentous 

fungi 
Hypocotyls that portion of stem below cotyledons in plant embryo, which 

eventually bears the roots 
Mycelium  network of hyphae, the characteristic vegetative phase of many 

fungi 
Mycorrhiza     the symbiotic association between a fungi and a plant 
Mycorrhizosphere  the soil influenced by the mycorrhizal roots and mycelia 
Necrosis      death of cells or tissues 
Obligate      limited to one mode of life or action 
Opportunistic    species specialised to exploit newly opened habitat 
Peleton       hyphal coils formed in cortical cells in orchidaceous 
mycorrhiza 
Phylum       a taxonomic rank between kingdom and class; a division 
Rhizosphere    the soil influenced by roots 
Saprotroph     organism that feeds on dead organic matter 
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Siderophore  a metabolic product of a fungus (or other organism) which 
binds iron and facilitates its transport from the environment 
into the microbial cell (from the Greek meaning “iron carrier”) 

Specificity     being limited to a species 
Vesicles      lipid rich storage organ  
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