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Abstract 

Barth, A. 2007. Spatially comprehensive data for forestry scenario analysis: consequences 
of errors and methods to enhance usability. Doctor’s dissertation. 
ISSN 1652-6880, ISBN 978-91-85913-00-8. 
 

This thesis focuses on the use of forest data for national level policy making. Three major 
issues were considered: (i) to determine typical requirements of data in forestry scenario 
analysis, (ii) to evaluate and further develop methods to determine data requirements, and 
(iii) to develop methods that improve data usability in forestry scenario analysis. 
Increasingly, the trend is to use spatially comprehensive data as a basis for forestry scenario 
analysis. Compared to traditional approaches, often limited to sample data, this allows for a 
broader scope. This is needed since sustainable forestry today must encompass economical 
and ecological, as well as social perspectives. Different approaches to linking data 
acquisition strategies with decisions that typically are based on forestry scenario analyses 
were used in the determination of data requirements. 

In Paper I, a qualitative framework was developed and applied. The conclusions were that 
none of the currently used Swedish data acquisition strategies were able to provide data for 
adequate multi-resource forestry scenario analysis at national level. In Papers II and III, two 
quantitative approaches were used for the evaluation of sample-plot imputations; using a 
decision support system the quantitative consequences of errors and cost-plus-loss with 
simulations were considered. From Paper II it was clear that traditional approaches to 
acquiring spatially comprehensive data may lead to severe errors in scenario analyses. Both 
papers concluded that improvements are required in the methodology of assessing the data. 
In Paper IV, an analytical cost-plus-loss approach was used to address the issue of decision-
making at the national level linked to national forest inventories. The conclusion was that 
the current level of Swedish national forest inventory is motivated fully by the role of the 
inventory to provide information for national level timber harvesting planning, whereas the 
inventory serves many other purposes as well. In Papers V and VI, methods were developed 
and tested regarding how the usability of spatially comprehensive data for national level 
forestry scenario analysis can be enhanced. In Paper V an algorithm for spatially consistent 
imputation within forest stands was developed and found to deliver good results in a case 
study. In Paper VI, a framework for landscape level imputation aiming at preserving overall 
composition while enhancing spatial configuration was outlined and tested. A core 
component of the framework was a restricted imputation algorithm that ensured that the 
classical imputation problem of data “tending towards the mean” was avoided. Case studies 
showed promising results, but it is clear that the methodological tool-kit must be further 
developed before it can be applied in practice. 
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Introduction 

Forest management planning today involves decisions where a wide variety of 
resources and objectives must be considered simultaneously (cf., Davis et al., 
2000). Thus, planning is becoming more complicated. This involves the entire 
process from assessing the input data to making final decisions based on results 
from a decision support system. Analyses made with these systems are typically 
termed “forestry scenario analyses.” This thesis focuses on the requirements on 
forest data to be used in such decision support systems in general, and specifically 
on requirements on spatially comprehensive data for forestry scenario analysis at 
national and sub-national level. Spatially comprehensive data are determined as a 
lattice of units, where one unit is linked to adjacent units, and then to the second 
adjacent units, and so on (cf., Cressie, 1993). Units can be linked to each other in 
regular or irregular patterns. The data can be a complete coverage (i.e. “wall-to-
wall” data) or only a partial coverage of an area. 
 

Decision-making in forestry 

Human demands for different forest resources, which in turn affect the objectives 
of forestry, tend to change over time (Davis et al., 2000; Ekelund & Hamilton, 
2001). During the twentieth century timber production had a unique role in forest 
management. Even today, the main objectives for forestry are also economical, and 
the production of timber substantially contributes to the common wealth. However, 
society currently has a strong interest in other benefits from the forest as well. 
Many societal objectives are common to the objectives of individual landowners, 
but priorities vary. Forest resources include a variety of good and services, and not 
only the production of timber. For example, the public appreciates forests for its 
recreational values as well as for picking mushrooms and berries, and hunting and 
fishing (e.g., Pukkala, Nuutinen & Kangas, 1995; Lindhagen & Hörnsten, 2000; de 
Vries & Goossen, 2002; Ihalainen, Salo & Pukkala, 2003). In addition, the 
aesthetic values of forests are of importance for humans’ well being. 
Environmental issues such as securing high biodiversity (e.g., Gustafson, 1998; 
Guisan & Zimmermann, 2000; Angelstam & Andersson, 2001; Ricotta & Avena, 
2003; Larson et al., 2004) and using the forest for storage of carbon (e.g., Dean, 
Roxburgh & Mackey, 2004; Backéus, Wikström & Lämås, 2005; Petersson & 
Ståhl, 2006) are other examples of environmental services that affect the objectives 
of forestry. Furthermore, in the Nordic countries another important use is for 
reindeer herding (e.g., Proceviat, Mallory & Rettie, 2003; Sandström et al., 2003). 
 

Decisions in forestry are made at many levels in society, from landowners 
managing their forest properties to governmental policy-makers providing the legal 
framework for forest management (Davis et al., 2000; Cubbage & Newman, 2006). 
The international society makes agreements between governments by using 
international conventions. Governmental bodies and politicians take decisions to 
develop forest policies at the national and sub-national level. These decisions are 
often influenced by these international conventions. Legislations, subsidies, and 
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information campaigns are tools that typically can be used to implement policies. 
Also, non-governmental organisations can influence decisions through such 
practises as lobbying or certification schemes (Cashore, Auld & Newsom, 2003). 
 

As in many Nordic countries, a large proportion of the productive forest land in 
Sweden is owned by private individuals whom are often called non-industrial 
private forest owners (NIPF). In Sweden the share of land owned by NIPF is more 
than 50% (Anon., 2006). Furthermore, a limited number of large forest companies 
possess 25% of the forest land. Less than 20% of the forest land is owned by the 
public. In Sweden the final decisions on forest management in practise rely on the 
350 000 individual forest owners and the 240 000 registered forest companies that 
own forest (Anon., 2006). However, both the public and the forest industry directly 
and indirectly affect the forest owners’ decision making process. 
 

Concrete decisions about forest management at levels such as estate and stand-
level are made by landowners. These decisions are made in agreement with the 
objectives of the forest landowner and within the framework of national forest 
policy. Typically, international conventions consider biodiversity and 
environmental issues, for example the Convention on Biological Diversity (CBD) 
and the United Nations Framework Convention on Climate Change (UNFCCC) 
(Holmgren, 2002). A decision at the national level could typically involve policies 
concerning reasonable levels of conservation areas or legislation on regeneration 
measures after cuttings. Typically, planners at large forest enterprises determine 
sustainable cutting levels to guarantee the supply of timber for their pulp- and 
sawmill or make decisions on which stands to fertilize within the next years. 
Private forest landowners with small properties typically consider when to do the 
next cutting, what tree species to plant, and what other silvicultural measures to 
apply. 
 

Decisions made by forest owners are based on anything from pure intuition to 
complex scenario analysis. In forestry a distinction between formal and incremental 
planning can be made (Saaty, 1985). Whereas formal planning typically is based 
on mathematical models predicting future scenarios based on specific assumptions, 
incremental planning is based on the experience and intuition of the decision-
maker. In reality a combination of the two methods is preferred and often applied. 
 

Forestry planning processes are typically applied hierarchically, divided into 
different levels based on the time perspective. In forestry three planning levels are 
often distinguished: strategic, tactical, and operational planning (Weintraub & 
Cholaky, 1991; Davis & Martell, 1993; Martell, Gunn & Weintraub, 1998; Tittler, 
Messier & Burton, 2001). The strategic long-term planning consists of functions 
for goal formulations and the aim is typically to find silvicultural programs or to 
determine sustainable harvest levels (cf., Martell, Gunn & Weintraub, 1998). The 
time perspective here is almost unlimited but in practice it is around one hundred 
years under boreal conditions. This planning level is important for the policy-
makers and the decision-makers in large scale forestry. Based on the strategic 
planning results, tactical planning involves decisions at an intermediate time scale 
to determine an optimal configuration for the harvesting tracts. The tactical 
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planning considers issues such as timber assortments, fertilisation and road systems 
with a time perspective of one to ten years (Martell, Gunn & Weintraub, 1998). 
The operational planning is the implementation level used for short term forest 
operations. Decisions concerning the usage of available resources of harvest 
capacity, the final selection of harvesting units, and timber logistics by linking 
short term industrial demands with forest management activities are typically made 
at this level (Martell, Gunn & Weintraub, 1998). 
 

The implementation of different decisions taken by the forest landowner and the 
policy-maker at the national level differs. The forest planning process at the forest 
landowners’ level often aims to identify treatments at the level of single stands, 
while decisions made by national-level policy-makers are general, and often affect 
all forest land. 
 

Decision support systems for forestry scenario analysis 

Strategic planning in forestry considers the effects of today’s decisions over 
decades, which is rather unique in business management. One reason for these long 
time perspectives is the long rotation periods in forestry. Another reason is the 
possibility of making reliable long term prognoses of forest development (cf., 
Söderberg, 1986; Peng, 2000; Lämås & Eriksson, 2003; Kangas & Kangas, 2004). 
The effect of many decisions can not be evaluated within short time horizons. 
Whether or not the forest owner planted the right tree species will in many cases 
remain unknown until final felling, which in boreal forests can be one hundred 
years after the decision was made. Similarly, if society finds the right strategy to 
protect a threatened species will not be known after several decades, and if the 
answer is negative, it may be too late to change the strategy. 
 

In formal forest planning, forestry scenario analysis can be applied to evaluate 
alternative management strategies. Forestry scenario analysis decision support 
systems are used to simulate the effect of different alternative decisions. The 
simulations are typically used by policy-makers evaluating the effects of different 
scenarios (e.g., Gustafsson, 2000). In many applications mathematical 
programming is used to find optimal strategies for forest management (von Gadow 
& Puumalainen, 2000; Hoen, Eid & Økseter, 2001). Many of today’s systems can 
be used both in optimisation and simulation mode. 
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Fig. 1. An outline of the prediction of forest ecosystem development and the derivation of 
resource indicators. Each resource (e.g. biodiversity) is defined in terms of one or more 
resource indicators (e.g. area of suitable habitat or volume of coarse woody debris). 
 

A forest simulator constitutes the basis in a decision support system (Fig. 1). 
Given a description of the current state of the forest, models are used to forecast 
the ecosystem development (Eid & Hobbelstad, 2000; Lämås & Eriksson, 2003; 
Gobakken, Lexerød & Eid, 2004). The models typically consider growth, 
mortality, and the effect of different treatments. Climate change and soil nutrient 
status may also be considered. Examples of models used to forecast the 
development of a forest ecosystem are presented in Table 1. Based on these 
prognoses the outcomes of different resources are simulated and can be optimised. 
One or more indicators can be used to evaluate the outcome of a resource. Volume 
of harvested timber is an example of an indicator that can be used to quantify the 
outcome of timber harvest. Similarly, the amount of coarse woody debris or one or 
more habitat suitability indices can be used as indicators of biodiversity. 
 
Table 1. Examples of models used for forecasting the forest ecosystem 
 

Models Reference 
Tree growth Agestam (1985), Andreassen & Tomter (2003), Huang & 

Titus (1999), Lexerød (2005), Monserud & Sterba (1996), 
Nyström & Kexi (1997), Porté & Bartelink (2002), Söderberg 
(1986) 

Mortality Achim et al. (2005), Blennow & Sallnäs (2004), Eid & Tuhus 
(2001), Fridman & Ståhl (2001), Pukkala et al. (2005), 
Talkkari et al. (2000), Thor, Ståhl & Stenlid (2005), Valinger 
& Fridman (1997) 

Treatments Karppinen (1998a), Karppinen (1998b), Karppinen (2005), 
Pesonen (1995), Pettersson & Högbom (2004), Pukkala, 
Ketonen & Pykäläinen (2003), Raulier, Pothier & Bernier 
(2003) 

Climate change Andalo, Beaulieu & Bousquet (2005), Zheng et al. (2002) 
Soil nutrient status Rolff & Ågren (1999) 

 

Prognoses 
Treatments 

Timber Timber 
Biodiversity Biodiversity 

Time point t+1 Time point t Time point t+2 

Prognoses 
Treatments 
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Among Swedish forestry companies the Forest Management Planning Package 
(FMPP) (Jonsson, Jacobsson & Kallur, 1993), developed in the 1970s and 1980s, 
is widely used. For policy making, a simulation system called HUGIN (Lundström 
& Söderberg, 1996) has been used to evaluate different forest management 
strategies at the national and sub-national levels (Gustafsson & Hägg, 2004). These 
systems are today being replaced with a new Swedish system called Heureka 
(Lämås & Eriksson, 2003). The advantage of Heureka is that it includes the 
evaluation of multiple forest resources and that the same system can be used both 
by forest managers and by policy-makers. Four applications are included: national 
and sub-national analyses, long-term forest planning, operational planning, and 
planning for individual forest land owners. 
 

Internationally, there are large numbers of decision support systems. In Finland, 
MELA (Siitonen, 1995) has been the main system since the 1970s. Initially it was 
developed for national forest scenario analyses but today it is also widely used for 
forest management optimisation. Another Finnish system is Monsu (Pukkala, 1999; 
Pukkala, 2004), which is a simulating and optimising system which includes spatial 
analysis of biodiversity, scenic beauty, and recreation scores in combination with 
timber production. SIMO (http://www.mm.helsinki.fi/MMVAR/SIMO/; 16 Aug. 
2007) is an ongoing project in Finland which aims to develop modules that can be 
used in future software for simulation and optimisation of forest development. 
Other European systems are GAYA-SGIS (Næsset, Gobakken & Hoen, 1997) in 
Norway, and EFISCEN (Pussinen et al., 2001) at the European level. In North 
America systems such as FORPLAN (Johnson, Stuart & Crim, 1986), LANDIS II 
(Scheller et al., 2007), and CLAMS (Johnson, Duncan & Spies, 2007) are being 
used. Forest sector models are another example of decision support systems used in 
the forest industry involving production and marketing, and the use of capital, 
labour and raw material (e.g., Andersson, Kallio & Seppälä, 1986; Lönnstedt, 
1986; Kallio, Moiseyev & Solberg, 2004). Such models have a different problem 
structure and different approaches to data acquisition; this type of model is not 
considered further in this thesis. 
 

In optimising systems there has been a number of different approaches to solve 
forest management problems (Dykstra, 1984; von Gadow & Puumalainen, 2000; 
Pukkala & Kurttila, 2005). Optimising methods include an objective function that 
is minimised or maximised depending on the objective. A typical objective 
includes maximising the net present value or minimising the transportation cost of 
harvest machinery. Linear programming is one of the first methods used in forestry 
applications (Dykstra, 1984; von Gadow & Puumalainen, 2000). Other optimising 
solution methods such as integer programming and mixed integer programming 
have also been used in forestry (Dykstra, 1984; Jones, Meneghin & Kirby, 1991; 
Hof & Joyce, 1993). Dynamic programming has been used to optimise a sequence 
of interrelated decisions (e.g., Dykstra, 1984; Ståhl, 1994; Lohmander, 2000). The 
size of the problem is often a limiting factor for these methods, and also their 
inability to solve problems with spatial details (e.g., Murray & Church, 1995; 
Bettinger & Chung, 2004). As a consequence, heuristic solution methods are often 
used, such as simulated annealing (e.g., Lockwood & Moore, 1993; Öhman & 
Eriksson, 1998), threshold accepting (cf., Bettinger et al., 2002), genetic algorithm 
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(e.g., Lu & Eriksson, 2000; Tomppo & Halme, 2004), and tabu search (e.g., 
Bettinger, Sessions & Boston, 1997; Wikström & Eriksson, 2000). The heuristic 
solution methods do not necessarily find the globally optimal solution, but they do 
generally find a relatively good solution within a reasonable time. 
 

Requirements for data in forestry scenario analysis 

The requirements for data in forestry scenario analysis depend on what kind of 
decision will be made based on the analysis. Data requirements need to be 
determined by what resources and indicators are to be included in the analysis and 
furthermore by what details of the scenarios are to be considered. Thus, the 
complexity of the decision support system will affect the data requirements. 
Summarising data requirements for the included models will result in the overall 
requirements. In a typical forestry scenario analysis these models have a wide 
range of requirements. Some models require data on characteristics of single trees 
while others only need average tree data at the stand level. At the same time, many 
models also work within geographical windows, requiring information on adjacent 
units. Independent of the scale at which data are to be assessed there are cases 
when spatially comprehensive data are required. In some models the spatial 
arrangement of forest trees is of importance and in other models information on the 
arrangement of forest stands is necessary. Examples of models that typically can be 
included and their requirements on data are given in the next sections. 
 

Data requirements of the forest simulator 

In the forest simulator empirical stand models or individual tree models are used to 
forecast the development of the forest state (Peng, 2000). The basic stand models 
utilise growth and yield equations for the forest stand, while more advanced stand 
models also consider the distribution of tree size (Peng, 2000; Kangas & Kangas, 
2004). These models are called size class models, or often diameter distribution 
models (e.g., Bailey & Dell, 1973; Kangas & Maltamo, 2000), and have better 
capability to estimate the outcome of different timber assortments than the more 
basic stand models. The stand models require data on the forest stand level, such as 
basal area number of trees. The size class models also require data at the level of 
size classes, such as the number of trees and basal area in specific size classes. 
Single tree models forecast the growth of single trees, and require data such as 
diameter, height, and species. Empirical validation studies have been made to 
assess the accuracy of different growth and yield models. Kangas & Kangas (2004) 
assert that the stand level models have generally performed better in these tests 
than the tree level models, due to cumulating errors on the tree level. However, the 
use of single tree growth and yield models has several advantages compared to 
more aggregated models used on the stand level. The experience from the Swedish 
systems such as HUGIN and FMPP are that single tree data enable reliable 
projections of growth (Söderberg, 1986; Lämås & Eriksson, 2003). Detailed 
information may be provided in the prognosis and increased flexibility of 
evaluation of treatment alternatives is possible (Peng, 2000; Wikström & Eriksson, 
2000; Gobakken, Lexerød & Eid, 2004; Kangas & Kangas, 2004). Some growth 
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models also require spatial data on the level of single trees, such as tree position or 
distance between trees. Such distance dependent growth models are applied to 
describe the competition of growth between single trees (e.g., Biging & Dobbertin, 
1992). 
 

The data requirements between decision support systems differ. Some systems, 
such as AVVIRK-2000 (Eid & Hobbelstad, 2000), are based on forest stand data. 
Each forest stand is represented by an average tree, and the forecast is based on 
basal area mean diameter, mean height weighted by basal area and the number of 
stems. Other decision support systems, such as FMPP (Jonsson, Jacobsson & 
Kallur, 1993), use data from single trees. Prognoses for a sample of stands are 
based on a list of single tree data, where each sampled tree diameter is registered. 
Age, height, and timber quality are also measured for a sample of trees, and are 
estimated for the residual trees. There are also decision support systems that 
require spatially comprehensive data, for example, Heureka (Lämås & Eriksson, 
2003). For some applications a list of trees are required for all stands in the 
landscape. 
 

Details and tools in the decision support system that affects data 

requirements 

There are a number of details that can be considered in a forestry scenario analysis 
which will affect the data requirements. If the analyses aim to evaluate different 
forest management strategies in a forest stand considering the risks of wind 
damages, data for adjacent stands will be required (e.g., Blennow & Sallnäs, 2004; 
Zeng, Pukkala & Peltola, 2007). The exposure of wind depends both on the stand 
structure and the surrounding terrain. Another example of improvement that affects 
the requirements of forest data is when the behaviour of non-industrial private 
forest owners is considered in a forestry scenario analysis. Information about the 
forest estate in combination with preferences of the forest owner enables analyses 
that consider the behaviour of the forest owners under different conditions 
(Pesonen, 1995; Karppinen, 1998b; Karppinen, 1998a; Lönnstedt, 1998). For 
example, the willingness among NIPF to cut when implementing different 
management policies or fluctuation of timber prices can be included in such 
analyses. This could be valuable for the policy-makers when evaluating forest 
policies at the national level or for a forest industry analysing potential harvesting 
levels in a timber catchment area. A further advantage of having data for every 
stand is a better connection between strategic and tactical planning (Lämås & 
Eriksson, 2003; Andersson & Eriksson, 2007). While strategic planning aims to 
establish long-term harvesting levels, tactical planning seeks the right configuration 
of forest stands available for cutting. Data from all stands are required to identify 
which areas are available for different treatments and to optimise the spatial 
distribution of the cutting areas. Spatially comprehensive data enhance the 
possibilities for dynamic treatment of units in forest planning (Holmgren & 
Thuresson, 1997; Lind, 2000; Heinonen, Kurttila & Pukkala, 2007). 
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Data requirements of resource indicators 

The requirement of details in the forest simulator depends to some extent on which 
resources are considered in the analysis. Timber is one resource which is strongly 
dependent on the forecast of the tree layer. Here, net income in different planning 
periods may be used as an indicator for timber. This indicator would be correlated 
with wood quality properties and outcome of different timber assortments. These 
models often require data on the level of single trees (Wilhelmsson et al., 2002; 
Moberg, 2006; Wilhelmsson, 2006). Also spatially comprehensive data may 
improve the utilisation of the timber resources, for example, when harvesting 
activities are being clustered (Öhman & Lämås, 2003). 
 

Biodiversity is another resource that depends on the landscape patterns and 
functions. Landscape metrics may be used to evaluate the ecological value of the 
landscape; these metrics both determine the composition of a landscape and its 
spatial configuration (Riitters et al., 1995; Gustafson, 1998). The composition of 
the landscape depends on its mixture of different patch types, independent of 
spatial location, while spatial configuration metrics characterize the arrangement of 
these characteristics. As an example, the composition provides the area of 
deciduous stands in a landscape, while the spatial configuration metrics are used to 
determine the arrangement of these deciduous stands, such as the size, shape and 
connectivity between the deciduous stands. These metrics can be used as indicators 
in the forestry scenario analysis, but also to evaluate, for example, habitat 
suitability for a certain species (e.g., Hirzel, Helfer & Metral, 2001; Ricotta & 
Avena, 2003; Edenius & Mikusinski, 2006; Mikusinski & Edenius, 2006). These 
landscape metrics often require spatially comprehensive data. However, studies do 
exist where landscape metrics have been derived from sampling data (e.g., Kleinn, 
2000). In forest management, a further advantage of using spatially comprehensive 
data is the possibility of creating continuous areas of old growth forests for 
biodiversity purposes (e.g., Öhman, 2000). All indicators of biodiversity do not 
require spatially comprehensive data, and some may be simulated with forest stand 
or single tree data (e.g., Kolström, 1998; Kruys et al., 1999; Lähde et al., 1999; 
Kruys, Jonsson & Ståhl, 2002; Bollmann, Weibel & Graf, 2005). As an example of  
this use of stand data, Kolström (1998) used diameter distribution of dead and 
living trees to describe stand structures. Kruys, Jonsson & Ståhl (2002) introduced 
a method for forecasting the decay-class distribution of dead trees over time. 
 

Recreational values are another example of a resource that typically would 
require spatially comprehensive data at the landscape level (Pukkala, Nuutinen & 
Kangas, 1995; Lindhagen & Hörnsten, 2000; de Vries & Goossen, 2002). Spatial 
configuration metrics are also of importance in some of these models. As an 
example, Pukkala, Nuutinen & Kangas (1995) integrate recreational values into 
forest planning by determining the variety and recreational values of each forest 
stand. The variety is described by the total length of boundaries between different 
forest stands. 
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Data acquisition for forestry planning and analysis 

Data acquisition for forestry scenario analysis can be conducted in many different 
ways, either using field inventories where a surveyor visits the forest to conduct 
measurements, or with remote sensing where data primarily are gathered from 
aerial surveys. In practical applications the methods often are combined. 
Independent of whether the inventory is conducted in field or from air, methods 
may be either subjective or objective (Ståhl, 1992). Typical for subjective methods 
is that the surveyor directly estimates the variables or makes supporting 
measurements in representative areas. The accuracy of such methods is strongly 
dependent on the personnel’s experience and skills (Kangas, Heikkinen & 
Maltamo, 2004). Errors will contain both a systematic and a random component, 
and cannot be estimated unless check assessments are conducted. Objective 
methods typically are conducted based on statistical sampling methods or by total 
tallies. Here, assessments are performed in areas selected by random sampling and 
by using repeatable methods for measurements. Advantages of objective methods 
are independency of surveyors, that estimates normally are unbiased, and that the 
precision can be determined based on data acquired (Ståhl, 1992). 
 

Field inventories 

In subjective field inventories, variables are acquired directly by the surveyor with 
ocular methods or based on subjective measurements (Ståhl, 1992). Trees that the 
surveyor finds typical for a stand are measured with instruments such as a 
relascope (Bitterlich, 1984) or a calliper. These methods are quick and can cover 
relatively large areas at a low cost. In objective field inventory statistical sampling 
theory is applied. Often field-plots are used to sample trees within a stand or over a 
larger area, independent of stand boundaries; trees can also be selected using a 
relascope. A time efficient method, but with a slightly biased estimator, is the 
point-to-tree sampling method, where a fixed number of trees is measured at each 
sampling point. Model based assumptions about the underlying process or 
empirical approximation can be used to improve the estimator (Kleinn & Vilčko, 
2006). For rare objects other sampling methods may be used, such as line intersect 
sampling for assessing downed coarse woody debris (e.g., Ringvall & Ståhl, 1999) 
or line transects sampling to assess wildlife populations (e.g., Ringvall, Patil & 
Taillie, 2000). Advantages of the field inventory methods are that a large number 
of variables can be measured. Often field-inventories are planned based on some 
prior information, such as previous inventories, maps, or remote sensing data. 
 

Some examples of typical field-based inventories in Sweden are: 
• At the forest estate level a stand register is often available for the 

landowner. Data are assessed for every stand, most often with subjective 
methods in field inventories aided by aerial photo interpretation (Ståhl, 
1992). The method used is quick and effective for tactical and operational 
forest planning. The data will contain both systematic and random errors, 
and are not suitable for long-term planning. 

• For long-term planning at the level of forest companies, a second-phase 
sampling is used to assess data for the forest scenario analysis with FMPP 
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(Jonsson, Jacobsson & Kallur, 1993). Stands are stratified based on the 
stand register. In each stratum a sample of forest stands are selected 
proportional to stand area. For each sampled stand an objective inventory 
is performed with approximately 10 field-plots and data at the level of 
single trees are assessed. 

• For national level planning and reporting, forest field-plot data from the 
national forest inventory (NFI) (Ranneby et al., 1987) have been used. In 
the NFI more than 10 000 field plots are inventoried every year. The 
field-plots are sampled using a systematic grid of tracts and are 
independent from stand borders and land use. Normally half of the field-
plots are on forest land. For the national forestry scenario analysis, field-
plots from five years of inventory are used (Gustafsson & Hägg, 2004). 

 
In recent years, technical developments have resulted in new devices for ground-

based surveys. Devices such as laser range finders, GPS, electromagnetic 
compasses, and electronic clinometers have improved productivity and are used in 
several surveys. Furthermore, with terrestrial laser scanning, ground-based 
measurements of forest variables, such as tree diameter, density, and upper stem 
diameters can accurately be assessed (Thies et al., 2004; Watt & Donoghue, 2005). 
However, the latter method is not yet a viable alternative for practical inventories. 
 

Remote sensing 

The main advantage of remote sensing is the ability to obtain information over 
large areas at low cost per area unit. Thus, remote sensing is often applied to attain 
spatially comprehensive data. Both airborne and space-borne sensors are used to 
acquire data (Lillesand & Kiefer, 2000). Space-borne satellites are commonly used 
to provide forestry with remote sensing data. Sensors can either use active or 
passive energy techniques. The passive sensors (e.g. optical sensors) measure the 
reflection of naturally available energy while the active sensors (e.g. radar and 
laser sensors) supply their own source of energy (Lillesand & Kiefer, 2000). 
 

Both airborne and satellite-borne optical sensors have been used in forestry for 
decades. Typically, these sensors depend on weather and light conditions, due to 
the measurement of natural available reflections. Film-based aerial photograph 
systems have been widely used in forestry for more than half a century (cf., 
Congalton & Green, 1999; Hauska, 1999). Delineation of forest stands and 
identification of tree species are some examples of applications commonly used in 
boreal forests. Measurements of tree heights and crown closure have been used to 
estimate stand volume. These interpretations are made visually, in some cases with 
equal accuracy as relascope measurements in field (Eid & Næsset, 1998). During 
the last years digital sensors have been developed and improved the resolution and 
usability of aerial photographs. In digital images more automatic image-processing 
can be performed (Pitkanen, 2001; Olofsson et al., 2006). During the last decades 
optical images have also been available from space-borne sensors (Tomppo et al., 
2002). The resolution varies due to sensor, and medium resolution sensors such as 
SPOT and LANDSAT provide images with a resolution around 10-30 meters (cf., 
Magnusson & Fransson, 2005). Fine resolution sensors such as Ikonos and 
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Quickbird are also available for forest applications (e.g., Kayitakire, Hamel & 
Defourny, 2006). These sensors have a resolution of one meter or less and are 
detailed enough to detect single trees; the quality of these images are comparable 
with aerial photographs. Low resolutions images are also available and are most 
often used in global assessments. 
 

The active sensors supply their own source of energy and many acquire data 
regardless of cloud cover and light conditions. Laser scanning and radar are two 
techniques based on active sensors that are used in forestry (Nilsson, 1996; Næsset, 
1997; Fransson & Israelsson, 1999; Lefsky et al., 1999; Fransson, Walter & 
Ulander, 2000; Holmgren, 2004). Both airborne and space-borne sensors are 
available with both systems, but primarily airborne applications have been used so 
far in forestry. The radar systems emit radio waves from a fixed antenna mounted 
below the aircraft (Hyyppä et al., 1997; Fransson & Israelsson, 1999; Fransson, 
Walter & Ulander, 2000; Lillesand & Kiefer, 2000). The most commonly used 
technique is the synthetic aperture radar systems. These systems are equipped with 
a physically short antenna but use the velocity of the aircraft to synthesize the 
effect of a long antenna. Radar operates in the microwave portion of the 
electromagnetic spectrum and the wavelengths used in forestry applications are 
from centimetres up to meters. In Sweden airborne radar was used to estimate the 
volume of storm damaged timber after the storms of 1999 (Fransson et al., 2002) 
and 2005. Another active sensor is the laser scanning system that has been 
introduced to Scandinavian forestry during recent years (Nilsson, 1996; Næsset et 

al., 2004). Laser scanning systems use either pulses or continuous waves of near 
infrared or green light to measure the distance to a target object on the ground 
(Wehr & Lohr, 1999). The continuous wave sensors constantly return signals 
reflected from the ground, while the discrete pulse systems either receive a first and 
a last return or multiple returns. The pulses are either projected directly on the 
ground or distributed over the ground during the flight. The most commonly used 
technique to distribute the pulses is with a scanner, which distributes the pulses 
over the ground perpendicular to the flight direction. The laser system measures 
coordinates of targets on the ground and the vegetation in three-dimensions. A 
digital terrain model is produced and tree height and tree cover is measured, so that 
basal area and volume can be estimated (Næsset et al., 2004). Research has been 
done to identify single trees and their properties such as position, height, crown 
width, stem diameter, and species (Hyyppä et al., 2001; Holmgren & Persson, 
2004). Airborne laser scanning provides planning data for individual forest owners 
in Norway (Næsset, 2004). In North America a profiling laser was used to assess 
multi-resource forest data at a sub-national level (Nelson et al., 2003). 
 

With remote sensing data, different methods for the estimation of forest variables 
can be applied and most often field data are required. Methods such as visual 
interpretation, digital photogrammetry, classification and single tree detection are 
some commonly used methods. Regression and non-parametric methods have also 
been used to predict forest variables. In applications based on regression (e.g., 
Hyyppä et al., 1997; Næsset, 2004; Magnusson & Fransson, 2005), the relationship 
between the variable of interest and a number of independent variables in the 
remote sensing data is modelled. The variables of interest are often estimated 
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independently and are obtained as interpolated values, which may result in an 
unnatural relationship between the variables (e.g., Holmström, 2001). Another 
approach for predicting forest variables is by using non-parametric methods. There 
are a large number of different methods, such as k Nearest Neighbour (kNN) 
(Tomppo, 1990; Tokola et al., 1996; Nilsson, 1997), Most Similar Neighbour 
(MSN) (Moeur & Stage, 1995), and Gradient Nearest Neighbour (Ohmann & 
Gregory, 2002). The independent variables in the remote sensing data are used to 
simultaneously predict a number of forest variables. Units with a complete list of 
variables of interest supply reference data. The linkage is provided by carrier data 
(cf., Holmström, Nilsson & Ståhl, 2001) that must be available from all units. 
Typically, carrier data comprise only a few variables, but are variables that can be 
inexpensively assessed for all units in the target population, as well as in the 
reference data set. The units may be entire stands, but more often they are plots or 
pixels (e.g., Holmström, Nilsson & Ståhl, 2002; LeMay & Temesgen, 2005; 
Wallerman & Holmgren, 2007). Similarities in carrier data between reference and 
target units are used to determine what reference data set to be imputed to a certain 
target unit. Similarity generally is expressed in terms of some suitable distance 
metric, for example, in Euclidean distance (Holmström, Nilsson & Ståhl, 2002). 
 

Data quality 

Accuracy and precision are considered as two important properties of an estimator 
(Tamhane & Dunlop, 2000). Accuracy is used to determine the deviation between 
estimated and true values. Estimators that produce estimates close to true values 
are considered accurate (Schreuder, Ernst & Ramirez-Maldonado, 2004). Often 
root mean square error (RMSE) is used as estimator to determine accuracy. 
Precision is closely related to accuracy but determines the deviations between 
individual measurements and their mean value. The precision is often characterised 
with the standard deviation, and estimated with the standard error (SE). In 
surveying, random errors express the random variability in the measurements and 
bias is the systematic non-random error. The sampling errors are typically random 
errors whereas measurement and judgement errors are typically both (Ståhl, 1992). 
An accurate estimate is obtained if precision is high and the estimate is unbiased 
(Schreuder, Ernst & Ramirez-Maldonado, 2004). 
 

The accuracy of the estimates varies due to the use of different techniques and 
methods for estimation. An overview and evaluations of different remote sensing 
techniques are given by Magnusson (2006). However, assessing the accuracy of 
spatially comprehensive data for forestry scenario analysis is more complex. 
Remote sensing techniques contain spatially auto correlated errors (Congalton, 
1988; Foody, 2002) which affect the accuracy in, for example, a forestry scenario 
analysis. Studies have shown the sensitivity of error patterns in spatially 
comprehensive data, both in scenarios using landscape metrics (Wickham et al., 
1997; Langford et al., 2006) and estimating habitat-suitability indices (Fleming et 

al., 2004). To assess the errors in classified data, an error matrix can be used 
(Congalton & Green, 1999). In spatially comprehensive data, data quality also 
includes the consistency between variables in adjacent units. In this thesis spatial 
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consistency is denoted to spatial data when the natural variability between units is 
accurately described. 
 

Planning sampling surveys 

When planning forest inventories, a number of aspects have to be considered. 
What parameters should be assessed, when should the inventory be conducted, and 
how accurate data are required? These questions are difficult to answer and, as a 
result, planning of inventories is often based on tradition and previous experience. 
However, the parameters to assess can partly be determined based on what 
decisions will be made and the requirements of data in the forestry scenario 
analysis system to be used. When to conduct an inventory is also dependent on 
what type of decision will be made based on the data and time for next treatment 
(Ståhl, 1994; Ståhl, Carlsson & Bondesson, 1994). To determine an appropriate 
target of accuracy of a forest inventory, considering the relationship between cost 
and precision is one possible approach (Thompson, 2002). The trade-off between 
inventory cost and precision for different intensities of inventories can be studied. 
An example is presented in Fig. 2, but to determine a reasonable trade-off is not 
simple. With fixed economical budgets it is possible to determine the expected 
accuracy when using different methods and techniques. Often the accuracy of 
different inventory methods is known and can be compared with other inventory 
methods. Mehtätalo & Kangas (2005) developed models for the expected error of 
the total volume and saw timber volume due to sampling errors. For a given 
inventory budget, optimisation was used to find the inventory strategy that 
minimised the expected error. 
 

 
 

Fig. 2. An example of the trade-off between inventory cost and precision. 
 

Cost-plus-loss analysis 

When a forest inventory is planned, the aim of inventory and the ability to make 
adequate decisions has to be considered as well. The link between decision and 
inventory data can in many cases be difficult to establish (Duvemo & Lämås, 
2006). When the link between data and decision-making is clear, and when the loss 
due to poor decisions can be assessed in monetary terms, cost-plus-loss analysis 
(e.g., Hamilton, 1978; Ståhl, Carlsson & Bondesson, 1994; Eid, 2000; Holmström, 
Kallur & Ståhl, 2003; Eid, Gobakken & Næsset, 2004) can be applied in the 

Cost 

SE 
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planning of forest inventory. In a cost-plus-loss analysis the sum of the inventory 
cost and the loss due to poor decisions based on the inventory data is minimized. 
The economical loss of a non-optimal decision is the difference between the 
income of decision based on perfect data and the income of the decision based on 
the data available. A general view of cost-plus-loss analysis is presented in Fig. 3. 
Formal cost-plus-loss analysis has so far generally only been applied to optimising 
the net present value at the forest stand level. The net present value is the revenue 
of all future treatments of the forest discounted to present value. Cost-plus-loss 
analysis can be performed using either an analytical approach (e.g., Ståhl, Carlsson 
& Bondesson, 1994) or by using a simulation approach (e.g., Eid, 2000). A review 
of the literature on cost-plus-loss was recently provided by Duvemo and Lämås 
(2006). 
 

 
 

Fig. 3. A general view of cost-plus-loss analysis showing the inventory cost (dashed line) 
and the non-optimality loss (dotted line). The solid line is the cost-plus-loss which should 
be minimised. 
 
Analytical cost-plus-loss 
The analytical approach of cost-plus-loss analysis could be described as follows 
(Hamilton, 1978; Ståhl, Carlsson & Bondesson, 1994; Duvemo & Lämås, 2006). 
The objective of a cost-plus-loss analysis is to minimize the sum of inventory cost 
and expected loss due to non-optimal decisions. The inventory cost is typically 
specified as: 
 

nccC 10 +=  (1) 
 

Here c0 is the fixed cost of the inventory and c1 is a variable cost per sampling unit. 
The loss function can take many forms: linear, quadratic, one-sided, and 
discontinuous functions may approximate the loss function (Hamilton, 1979). 
Here, the linear (Eq. 2) or quadratic (Eq. 3) loss function are given as examples 
(Hamilton, 1978; Duvemo & Lämås, 2006). 
 

ελ=L  (2) 
 

2λε=L  (3) 

 
Here, λ defines the relationship between error and loss. The error (i.e., the 

deviation between true value and estimated value) is given by ε. In a general case, 

Cost 

Accuracy 
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knowing that sampling errors typically are normally distributed, the expected value 
of the absolute deviation in the linear case is (2/π)1/2std(ε) and in the quadratic case 
E(ε2)=S2/n. The expected cost-plus-loss, assuming simple random sampling of 
units can then be expressed as: 
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where S is the population variance. 
 

By minimizing the expected value, the optimal inventory intensity can be 
determined in the linear case as Eq. 6 and in the quadratic case as Eq. 7. 
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Cost-plus-loss analysis using simulation 
In the simulation approach of cost-plus-loss analysis, data to be evaluated are used 
in forest planning. An example of this is in a forestry scenario analysis which 
optimises net present value (e.g., Holmström, Kallur & Ståhl, 2003; Eid, Gobakken 
& Næsset, 2004). Treatment schedules based on the evaluation data are applied to 
the analysis with perfect data. The scenario analysis is also applied using the 
perfect data and the deviation of net present value between the two analyses is then 
determined to be the decision loss. 
 

Planning sampling surveys for national forestry scenario analysis 

Means to evaluate the consequences of data acquisition strategies are limited and 
seldom used. Cost-plus-loss analysis is a rather unique tool for evaluating forest 
data in decision-making. However, in many relevant situations cost-plus-loss is to 
some extent limited in the ability to evaluate data acquisition. One such situation is 
in decision making at the national level, where the connection between decisions 
and data are not that obvious. For example, when national data are reported to 
international conventions, the path from data to decision is long and unclear. 
Another challenge is the multiple purposes of national forest data and it can be 
extremely difficult to determine a complete loss function. In planning a multi-
resource inventory, not all resources can be expressed in monetary terms. In this 
case, a cost-precision approach would be achievable, but a true cost-plus-loss 
analysis would be difficult. The requirement of spatially comprehensive data also 
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limits the use of analytical cost-plus-loss analysis; however, a simulation approach 
would be conceivable. 
 

The development of more complex forestry scenario analysis at national level 
and a wider spectrum of available data acquisition methods necessitate further 
progress of means with which to evaluate the consequences of data quality. 
However, when data quality is linked to decision making, an important note is that 
there are many other uncertainties beside data errors which affect the outcome of 
forest planning (Kangas, 1997). 
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Objectives 

The main objectives of this thesis were to evaluate different data acquisition 
methods and develop tools to enhance data usability within national and sub-
national level forestry scenario analysis. Special considerations were given to 
situations where resource indicators required spatially comprehensive data. Three 
major issues were considered: i) to determine typical requirements of data in 
forestry scenario analysis, ii) to evaluate and further develop methods to determine 
data requirements, and iii) to develop methods that improve data usability in 
forestry scenario analysis. Means of linking data acquisition strategies with 
decisions that typically are based on forestry scenario analyses were used in the 
determination of data requirements in Papers I-IV. In Papers V and VI, methods to 
improve the usability of spatially comprehensive data were developed. The specific 
objectives were 
 

Paper I. To provide a framework for evaluating data acquisition strategies 
for national forestry scenario analysis. A qualitative approach was used to 
determine which data quality characteristics are of importance and what data 
acquisition strategy should be applied. 

 
Paper II. To evaluate the quantitative consequences of using spatially 
comprehensive data based on airborne laser scanning and medium resolution 
satellite images in a sub-national forestry scenario analysis. The evaluation 
focuses on the errors in forecasted resource indicators, such as net income, 
cutting volume and stand volume. 

 
Paper III. To apply cost-plus-loss analysis in a simulated approach for 
evaluating the quantitative consequences of using spatially comprehensive 
data based on airborne laser scanning and medium resolution satellite images 
in decision-making at the forest stand level. The consequences of data quality 
in forest management planning in terms of decision loss and inventory cost 
were considered. 

 
Paper IV. To apply cost-plus-loss analysis for determining an appropriate 
sample size of a national forest inventory for estimating sustainable harvest 
levels at a national level. An analytical cost-plus-loss analysis approach was 
used. 

 
Paper V. To develop a method whereby the within-stand spatial consistency 
was considered in the estimation of spatially comprehensive stand data. A 
non-parametric method for estimation of forest characteristics and a heuristic 
optimising approach to improve the quality characteristics of data were used. 
The method was then evaluated in a simple case study. 

 
Paper VI. To provide a framework for improving composition and spatial 
consistency in spatially comprehensive data at the landscape level. Core parts 
of the framework were evaluated in a case study. 
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Summary of papers 

Framework for determining forest data requirements in forestry 
scenario analysis (Paper I) 

In Paper I a framework for evaluating data acquisition strategies for national 
forestry scenario analysis was provided. Here, a qualitative approach was used to 
determine which data quality characteristics are of importance and what data 
acquisition strategy should be applied. 
 

Evaluation of data acquisition strategies 

Planning a forest inventory to acquire data for national forestry scenario analysis 
has become more complex due to the multi-resource objectives in forestry and the 
development of new inventory techniques, mainly in the field of remote sensing. 
Routines for evaluating different data acquisition strategies are needed. Connecting 
the forest inventory with decision-making is, however, difficult. More analytical 
approaches for evaluating data acquisition strategies can be performed with the 
cost-precision approach or by cost-plus-loss analysis (Hamilton, 1978; Ståhl, 
Carlsson & Bondesson, 1994). However, the cost-precision approach only 
determines the accuracy given certain cost and does not consider the use of data in 
decision-making. In cost-plus-loss analysis the decisions are also considered. In 
multi-resource forestry this approach is not directly applicable due to the difficulty 
of expressing many of the resources in monetary terms. 
 

Multi-resource forestry scenario analysis requires an expansion of the traditional 
cost-plus-loss analysis. Here, two approaches could be possible. 

• One approach would be to define all considered resources into monetary 
terms along principles outlined in environmental economics (Mattsson & 
Li, 1993; Boman & Mattsson, 1999; Boman, Bostedt & Persson, 2003). 
Then, cost-plus-loss analysis is applied. However, it is known from 
environmental economics that it is very difficult to estimate the exact 
values of different resources (Boman & Mattsson, 1999). It is likely that it 
is even more difficult to estimate the effects of non-optimal decisions in 
monetary terms. 

• Another approach would be to evaluate the effect of every single resource 
using different norms for each resource. In this case there are no 
straightforward means to compare the overall effect of data for different 
resources. Thus, making a decision about a forest inventory strategy will 
be largely subjective, but at least the consequences for including different 
resources will have been evaluated. 

 
As an alternative to these two quantitative approaches, a more generic approach 

regarding the choice of an inventory strategy could be applied. This approach is 
conducted in two steps. First, the type of indicators that can be applied when 
different data acquisition strategies are used is identified. Secondly, for a given set 
of indicators, an assessment is be made of the likely consequences of using data 



 25 

with the specific quality that can be expected from a certain inventory strategy. To 
accomplish this type of analysis, some concepts are needed. First, the indicators 
typically included in forestry scenario analyses and their data requirements have to 
be determined. Secondly, a conceptual way of characterizing forest inventory data 
quality is also proposed for use in the evaluation. 
 

Resource indicators and their data requirements 

As stated in the introduction the data requirements for forestry scenario analysis 
systems are highly dependent on the models used in making forecasts of forest 
ecosystem development and resource indicators. The values of the indicators can 
be derived based on the management scenario assumed and the forecasted 
ecosystem states (cf. Fig. 1). To derive the values of the indicators, there is a need 
for models that link data regarding the forecast ecosystem state to values for the 
specific indicator. A restriction when developing this type of model, therefore, is 
that it can only be based on data that can be satisfactorily forecasted. When 
determining what data are needed as input to a decision support system, one needs 
to consider what data are required to forecast the ecosystem state and the 
indicators. Summarising the data requirements of the models presented in the 
introduction, there is a wide range of demands. Some of the indicators require 
crude data at landscape or stand level, while other indicators demand more detailed 
descriptions at the single tree level. 
 

Characterising forest inventory data quality 

The next step is a generic quality assessment to identify the likely consequences of 
different types of errors. The trade-off between inventory cost and data quality is 
an important issue since an exact description of the current state is never possible 
to obtain. However, data quality is a complex property that cannot be quantified 
appropriately with any single measure. As a basis for the evaluation of different 
data acquisition strategies, five different features of data quality are proposed. To 
present these features, a distinction is made between (1) the descriptions made 
within a single description unit, and (2) the relationships between the description 
units in the forest landscape. A description unit is the smallest area described in a 
data set, for example, a pixel, a field plot or a forest stand (depending on the 
analysis set-up). Following an inventory, the landscape is described in terms of a 
set of description units allocated over the landscape with or without geographically 
determined locations. The features distinguished within a single description unit 
are 

• degree of detail, in terms of how many variables are assessed, 
• accuracy of the variable estimates, and 
• consistency between the variables. 

 

The features distinguished regarding the relationships between the description units 
are 

• spatial completeness and 
• spatial consistency of errors. 

 

Each of the five features is now described in more detail. 
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Degree of detail 
The degree of detail may differ within a description unit; some data acquisition 
strategies generate a long list of variables, while others are only able to provide a 
few (Fig. 4). A high degree of detail may be obtained when a plot is inventoried in 
the field. In this case, it is simple to add additional variables to the data set. In 
contrast, a pixel in a satellite image is generally described with only a few digital 
numbers. Here, forest variables have to be predicted. In general, a description with 
a high degree of detail provides better opportunities for forest analyses than a 
description with a low degree of detail. With a detailed description, normally it is 
possible to account for more resources and indicators in the analyses compared 
with the case where only a very crude description of a forest is available. 
 

 
 

Fig. 4. Degree of detail depends on the number of variables that describes the unit. Many 
parameters indicate a high degree of detail. 
 
Accuracy of variables 
Accuracy is a measure of how well an estimated value corresponds to the true 
parameter value. Some data acquisition strategies are more accurate than others in 
describing forest variables (Fig. 5). For example, a field measurement of the basal 
area of a stand generally results in a more accurate value than if aerial photo-
interpretation is used for that purpose (Ståhl, 1992). Descriptions with high 
accuracy are preferred in forestry analyses. 
 

 
 

Fig. 5. The accuracy of variables is a measure of the relationship between an estimated 
value and the true parameter value (dotted line). In the figure, this is illustrated in terms of 
distribution functions for estimated values around some true parameter value. 
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Consistency between variables 
Another data quality feature to be considered within description units is the 
consistency of the error structure for the estimated variables (Fig. 6). Consistency 
in errors means that if one variable, at random, overestimates the true value for a 
certain plot, variables that are logically connected to the first variable should also 
be overestimated at that plot for the errors to be consistent if the correlation is 
positive. The consequences of an inconsistent error structure might be severely 
erroneous forecasts since the models are usually derived using consistent data. For 
example, the predicted or measured tree volume in a description unit needs to be 
consistent with stand age otherwise growth predictions for the unit may be severely 
biased. Variables that are measured or predicted independently from each other run 
a larger risk of obtaining low consistency. The correlation structures of error 
distributions have been studied by Kangas & Kangas (1999). 
 

 
 

Fig. 6. Examples of high and low consistency of the error structure for three positively 
correlated variables assessed within two different description units (A and B). The dotted 
line symbolises the true value. 
 
Spatial completeness 
A landscape can be described with different numbers of description units, and thus 
the assessed proportion of the landscape will vary (Fig. 7). For example, spatially 
comprehensive data for a landscape can be provided by satellite images, while 
owing to cost and practical issues, field measurements will seldom cover more than 
a small fraction of the landscape. To meet modern modelling requirements a 
spatially complete description is sometimes preferred (e.g., Lämås & Eriksson, 
2003). With a high proportion of the landscape assessed, indicator models that 
require this type of data can be applied. 
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Fig. 7. Spatial completeness, expressed as the ratio of the sampled area to the total area. In 
the illustration, grey represents the area that has been sampled and white is non-sampled 
areas. 
 
Spatial consistency of errors 
The last quality characteristic of forest data is the spatial consistency of errors. 
When compiling data at the landscape level, different description units are linked 
to each other in some type of grid system to set up a partial or complete cover 
description. In doing this, one needs to ensure that the large-scale patterns in the 
landscape are realistic, for example that forest stands are represented by realistic 
features as well as having realistic within-stand variability. This consistency might 
not be of importance for predicting the total or average value of some variable in a 
region or a stand, but when models that require data from a larger neighbourhood 
are applied (e.g. habitat models) the output will depend on the realistic way in 
which patterns are described in the landscape. Management decisions depend on 
both within- and between-stand variability. High consistency of errors is preferred 
when accurate landscape metrics are important, for example, in a national level 
scenario analysis. Unless the spatial localisation of different features in the dataset 
is perfect, it would be preferable to have spatially correlated errors rather than 
completely random distributed errors (Fig. 8). Random distributed errors, so called 
white noise, are however advantageous in some applications, such as in a tactical 
and operational level planning when the exact position of different resources is 
important. 

 
 

Fig. 8. High spatial consistency of errors will form a realistic landscape pattern. If the 
consistency is low, it will not be possible to delineate forest stands. Black colour denotes 
description units with overestimated variables, and white colour with underestimated 
variables. A map of gray values would also indicate a landscape of high consistency due to 
almost perfect data. 
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Application of the evaluation framework: an example 

In Paper I a case example was conducted to illustrate how to use a generic 
approach when making decisions on data acquisition strategies for national forestry 
scenario analysis based on the proposed evaluation framework. Three commonly 
used data acquisition strategies were selected: (1) objective sample plot inventory 
similar to a NFI in a Nordic country (‘‘field plots’’); (2) stand level inventory using 
a combination of aerial photographs and ocular assessment in the field (‘‘stand-
level’’); and (3) use of field sample plots in combination with satellite images and 
kNN imputation of plots (‘‘imputation’’). The cost for each method was in Paper I 
determined to be € 0.30 ha-1, € 7.00 ha-1, and € 0.30 ha-1, respectively. The 
evaluation of the three strategies follows the qualitative generic alternative that has 
been previously described. The assessment is done in two steps: the first step 
considers what type of indicators can be used based on the available data from the 
evaluated strategy. The second step considers the likely quality using the same data 
to estimate the outcome of each resource. 
 

Results and discussion 

Quality characteristics for each of the three data acquisition strategies were 
considered, these were linked to the data requirements on single resource 
indicators (Table 2). Scores were given in the table as a simple assessment of both 
how well a resource can be described in terms of indicators (“Content”) and the 
likely quality of the indicator predictions (“Quality”). 
 

In the Field plot strategy, single tree data are available and the content for 
resources such as timber, forest fuels, and carbon storage can be predicted at an 
acceptable level. The diameter distribution of the trees is known, and the value of 
the timber and different management strategies can be considered (e.g., Kangas & 
Kangas, 2004). However, the lack of spatial data limits the use of many indicators 
of resources such as biodiversity and recreation (e.g., Edenius & Mikusinski, 
2006). With the Field plot strategy, the quality of predictions would likely be 
generally good due to the use of objectively sampled data. In the Stand level 
strategy, only average values are known for each stand. The spatially 
comprehensive data would increase the content of resources such as biodiversity 
and recreation, and to some extent also timber and forest fuel. For example, the 
risk of wind damage and the behaviour of the landowners can be considered in the 
scenarios (e.g., Blennow & Sallnäs, 2004). However, not knowing the diameter 
distribution of trees would limit many important indicators such as timber value. 
The subjective inventory method contains a bias and the quality of predictions 
would be poor (e.g., Ståhl, 1992). The Imputation strategy generates both spatially 
comprehensive data and a list of single trees, which would provide a good basis for 
good content with most of the resources. However, the complexity of the data 
might affect the quality negatively. 
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Table 2. Overview of the evaluation in the case study of the three strategies, and how well a 
resource can be described in terms of indicators (“Content”) and the likely quality of the 
indicator predictions (“Quality”). One score (●) = poor, two scores (●●) = acceptable, 
and three scores (●●●) = good. 
 

 Field plots Stand level Imputation 
Resource Content Quality Content Quality Content Quality 

Timber ●● ●●● ●● ● ●●● ●● 
Forest fuel ●● ●●● ●● ● ●●● ●● 
Carbon storage ●● ●●● ● ● ●● ●● 
Biodiversity ● ●●● ●● ● ●● ●● 
Recreation ● ●●● ●● ● ●● ●● 
Reindeer herding ● ●● ●● ● ●● ● 
Berries and 
mushrooms 

● ●● ●● ● ●● ● 

 
In a forestry scenario analysis, where all the resources are of interest, it is clear 

that either the field plot or the imputation strategy would be preferred. The cost of 
the stand-level strategy is simply too high to make this method appropriate. It is 
obvious that none of the methods would be optimal in all cases, and thus a 
conclusion is that it should be relevant to combine methods when setting up 
suitable data acquisition procedures for national-level analyses. A complete 
database of all required data and information for a forestry scenario analysis at the 
national level would grow unnecessarily large. The use of overly large data sets 
would make the costs of data acquisition high and affect the efficiency of the 
analysis in a negative way. To simplify the analysis and to reduce the cost of 
inventory it is probably relevant to include only a sample of the landscape in the 
analysis. In this limited area, all the necessary spatially comprehensive data can be 
integrated. 
 

Using the suggested framework is largely subjective and the results exemplified 
in Table 2 will not give the same result upon repetition, but nonetheless should 
follow a similar pattern. Thus, the result will depend on the knowledge and 
experience of the users. However, the framework provides some support when 
making decisions about data acquisition strategies and will hopefully assist the 
decision-maker in finding arguments for a proper decision.  
 

Evaluating data acquisition strategies (Paper II-IV) 

In Paper I a generic qualitative reasoning for evaluating forest data acquisition 
provided a framework for support when making decisions. However, these results 
are likely to be strongly dependent on the knowledge and experience of the users. 
More quantitative methods can be applied theoretically to learn more about the 
effects of different data sources in different decision situations. Papers II and III 
study the effects that data have on decisions with a simulation approach in a 
decision support system. In Paper III, the data are evaluated by means of cost-plus-
loss analysis. The focus of the decision making is from the view of a forest owner 
optimising treatments in a forest stand. However, at national and sub-national level 
policy-making, a forestry scenario analysis is dependent on the quantitative 
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outcome of different resources. Consequently, Paper II focuses on the accuracy of 
outcomes in specific planning periods. In Paper IV, analytical cost-plus-loss 
analysis is applied to determining an appropriate sampling size for a national level 
sample-plot inventory. Decisions at the national level are considered in the loss 
function. 
 

Material 

An overview of the material and methods used in Papers II-IV are presented in 
Table 3. In Papers II and III imputation based on SPOT medium-resolution 
satellite data and laser scanning data were used in the evaluation. These data were 
available from a previous study and offered a unique opportunity to test cost 
efficient sample-plot data in forestry scenario analysis. A comprehensive 
description of the data are available in Wallerman & Holmgren (2007). In Paper 
IV, data from the Swedish NFI were used (Ranneby et al., 1987). More details of 
the data and imputation method are given in the following section. 
 
Table 3. A general overview of forest data and methods used in Paper II-IV. 
 

  Paper II Paper III Paper IV 

Evaluation data SPOT ● ●  
 Laser ● ●  
 Laser & SPOT  ●  
 Field-plots  ●  
 Swedish NFI   ● 

Method FMPP ● ●  
 Error consequences ●   
 Cost-plus-loss  Simulation Analytical 

 
Forest data (Papers II and III) 
The forest data used in Papers II and III were collected as a sample of stands in a 
1 200 ha estate, Remningstorp, in southern Sweden (lat. 58°30’N, long. 13°40’E). 
The estate is privately owned and dominated by Scots pine (Pinus sylvestris), 
Norway spruce (Picea abies), and Birch (Betula spp.). Field data were assessed by 
surveying 10 m radius field plots using methods and material developed for the 
FMPP (Jonsson, Jacobsson & Kallur, 1993). A systematic grid was used to sample 
approximately 10 field plots in each sampled stand. In addition, 16 stands 
inventoried using a cluster of 4 by 4 adjacent field plots were available. In total 67 
and 64 stands were available for the simulations in Paper II and Paper III, 
respectively. Satellite image data for the field plot centres were extracted from a 
geometrically precision corrected SPOT-5 HRG scene, acquired at 10:05 AM on 3 
June 2003. Laser scanner data were acquired by the airborne TopEye system on 9 
August 2003 at a flight altitude of 430 m, resulting in 1.5–2.0 pulses m–2. 
 
Evaluation data (Papers II and III) 
In total three remote sensing data sets were evaluated as carrier data. As reference 
data 870 field-plots from the inventoried stands were used. Estimation of forest 
variables in each forest stand was made using MSN (Moeur & Stage, 1995; 
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Temesgen et al., 2003). Approximately 30 field plots with data at the level of 
single trees were assigned to each forest stand. The distance metric was the 
Euclidean distance weighted by a vector of the squared canonical correlation 
(Moeur & Stage, 1995; Wallerman & Holmgren, 2007). The independent variables 
were transformed to define an efficient measure of similarity between forest 
variables of the sample-plot data, accounting for the different forest information 
content, scale, and correlation of independent variables. Different independent 
variables were used in the three data sets. In the SPOT-based data, the XS1, XS2, 
XS3, and XS4 bands were used. In the Laser-based data, measures used were all 
10th percentiles, the 95th percentile, mean height, standard deviation of height, and 
semi-variogram parameters. These semi-variogram parameters corresponded to 
nugget, sill, and range (cf., Cressie, 1993). In the combined SPOT- and Laser-
based data, the same satellite and laser data were used, with the exception that the 
laser data did not contain all the 10th percentiles. In Paper II, the field-plot 
inventoried stands were considered to provide the true description of the forest 
estate. In Paper III a field inventory of 5 and 10 field-plots was simulated for each 
stand using bootstrapping (Efron & Tibshirani, 1993). In the data evaluation in 
Wallerman and Holmgren (2007), the mean volume was estimated with an RMSE 
of 18% using the laser-based data, and of 33% using the SPOT-based data. In 
contrast, the mean volume estimated with data assessed according to the FMPP 
instructions had an RMSE of 12% (cf., Ståhl, 1992). These data are normally used 
as input data in the FMPP. 
 
Forest data (Paper IV) 
In Paper IV data from the Swedish NFI for the period 2003-2006 were used to 
derive the empirical variances needed for the cost-plus-loss analysis. In Sweden 
NFI data are acquired in permanent and temporary tracts (or, according to the 
nomenclature in some countries, plots). This tracts consist of circular plots (or sub-
plots) with 10 or 7 meters radii (Ranneby et al., 1987). The country is divided into 
a total of six regions. Every year about 1 400 tracts are inventoried which 
corresponds to more than 10 000 plots. Half of the plots are located on forest land 
and two thirds of these are permanent plots. In Table 4, a basic summary of the 
inventory design and forest characteristics is given. 
 
Table 4. Basics about the Swedish NFI sample size in different regions and summary 
statistics about the total land and fresh water area of Sweden, forest area and volume 
according to the forest definition of FAO. 
 

 Tracts (n yr-1) Plots (n yr-1) 
 Perm. Temp. Perm. Temp. 

Total 
area 

(1000 ha) 

Forest 
area 

(1000 ha) 

Volume 
(m3 ha-1) 

Region 1 109 58 859 678 11 813 5 232 74.2 
Region 21 96 53 749 612 6 355 4 844 83.3 
Region 22 94 49 736 562 6 555 4 538 114.7 

Region 3 125 67 982 787 6 865 5 166 125.0 
Region 4  269 226 2 079 1 301 10 717 6 395 160.1 
Region 5 180 86 709 493 2 735 1 367 178.0 

Country 873 539 6 113 4 433 45 040 27 542 117.1 
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Methods 

Different approaches were used in the evaluation of data (Table 3). In Papers II 
and III the consequences of errors in forest data were evaluated using a decision 
support system. In Paper II, the results are analysed in detail, which was done by 
considering the effect of the outcome of several indicators in specific planning 
periods. In Paper III, the decisions concerning treatments were studied with a 
simulation approach of cost-plus-loss analysis. Here, the decisions are applied to 
the true state of the forest, while in Paper II the probable consequences of using 
poor data are considered. In Paper IV an analytical approach of cost-plus-loss was 
used to determine an appropriate accuracy level for a NFI. 
 

In Papers II and III, the evaluation data were used as input for strategic level 
planning in the FMPP (Jonsson, Jacobsson & Kallur, 1993). Detailed growth 
projections and economic yield calculations were performed. Data enters the 
planning system at the level of single trees on sample plots. The trees on each plot 
in a stand are projected five years at a time, and different treatment options are 
applied at the stand level. The FMPP simulates a large number of different 
treatment schedules for each individual stand and calculates the net present value 
of each treatment schedule. The treatment schedule resulting in the highest net 
present value was chosen as the optimal schedule. 
 
Consequences of errors in data (Paper II) 
In Paper II, the outcome in terms of the indicators harvesting volume, net income, 
and standing volume for each planning period were compared between simulations 
based on a certain data source and the true description. The mean deviation was 
estimated as a measure of systematic deviation and the absolute mean deviation as 
a measure of the average variation for ten 5-year planning periods. 
 

In Scenario 1, one landscape consisted of the 67 stands with each stand having 
an area of 5 ha. Three scenarios were calculated with different interest rates (2%, 
3%, and 4%) and denoted Scenario 1a, 1b, and 1c, respectively. In Scenario 2, 
three landscapes were constructed, each having a different age class composition. 
These landscapes were 5 000 ha in size, and the original 67 stands were given 
various area weights depending on their stand age. The stand register was used as 
the source of age information for each stand. The area weights of the stands for 
these landscapes are presented in Table 5. 
 
Table 5. Age structures of the landscapes used in Scenario 2 and area per stand. 
 

  Landscape 2a Landscape 2b Landscape 2c 
Age 
class 
(yrs) 

Number 
of stands 

Total 
area (ha) 

Area per 
stand 
(ha) 

Total 
area (ha) 

Area per 
stand 
(ha) 

Total 
area (ha) 

Area per 
stand 
(ha) 

0-20 12 1 000 83.3 1 500 125.0 1 500 125.0 
21-40 16 1 000 62.5 2 000 125.0 750 46.9 
41-60 6 1 000 166.7 500 83.3 500 83.3 
61-80 20 1 000 50.0 500 25.0 750 37.5 
> 80 13 1 000 76.9 500 38.5 1 500 115.4 
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Cost-plus-loss using simulation (Paper III) 
In Paper III the simulations in FMPP were used to calculate the loss due to non-
optimal decisions based on errors in input data. Only decisions from the first ten 
years were considered in the analysis. From ten years and onwards correct data 
were used. The evaluation data were used as input in the forest scenario analysis. 
Identical evaluations were carried out using data with 2, 5, and 10 ha large stands. 
Analysis with two different interest rates, 2% and 4%, were carried out. The 
suggested optimal treatment schedule based on the evaluation data were then used 
during a ten year time period with true input data. The difference in net present 
value for each stand was determined as the loss (Fig. 9). The loss and the inventory 
cost of each data set were then summarised. 
 

 
 

Fig. 9. The solid line is the true Net Present Value (NPV), and the dashed line is the NPV 
based on inventory data. The decision loss is calculated as the deviation between true NPV 
and the NPV based on the inventory data. T is the optimal time for cutting based on the true 
and inventoried state. 
 
Analytical cost-plus-loss (Paper IV) 
In Paper IV an analytical approach of cost-plus-loss was applied. By determining 
the relationship between error and loss in a NFI, an appropriate sample size could 
be determined. The analysis was only considered when the data were to be used to 
make a prognosis about sustainable harvesting levels at the national level. The 
losses varied depending on whether harvesting levels were underestimated or 
overestimated. In most applications the loss is determined with a quadratic loss 
function. These are appropriate when losses decrease at decreasing rate of error, 
such optimising net present value. However, these loss-functions would not be a 
realistic scenario in determining sustainable harvesting levels at national level. 
Thus, an linear loss function is appropriate when losses are proportional to the 
absolute value of the error in the inventory estimate (Hamilton, 1979). Harvesting 
estimate errors were determined linearly related to losses and thus a linear loss 
function of the following kind was used: 
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Here, L is the loss, εv is the deviation between the correct total volume and the 
estimated total volume based on calculations using Swedish NFI data, and λ1 and 
λ2 are constants relating harvesting level error with loss. Harvesting levels are not 
directly estimated within the Swedish NFI; instead, data on trees and site 
conditions on plots are entered into the HUGIN system (Lundström & Söderberg, 
1996). With this system, estimates of current growth increments form the basis for 
the estimation of sustainable harvesting levels. HUGIN uses simulation to make a 
prognosis on future growth. Thus, contrary to FMPP used in Paper III, there is no 
optimisation of net present value. For the purpose of this study we believe that it is 
a reasonable, and simplifying, approximation to assert that the output harvest level 
is the same as the estimated current net increment. In turn, the net increment can be 
expressed as a proportion, β, of the estimated total volume (Eq. 8). The expected 
cost-plus-loss can then be expressed as: 
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Here, Std(V) is the population (of infinitely many tracts) standard deviation of total 
volume, Std(Vha) is the corresponding standard deviation of per-hectare volume, 
and A is the area of the area studied. To find the cost-plus-loss minimal number of 
tracts, Eq. 9 was differentiated with respect to n and the derivative set to zero (after 
verifying that the second order derivative was positive). The following expression 
for the optimal number of clusters was obtained: 
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This formula was applied to each type of plots (permanent and temporary) in each 
region of the Swedish NFI, as well as for the country as a whole, by specifying that 
the conditions in mid-Sweden would represent average conditions at the country 
level. 
 

The c1 coefficients were € 1 700 and € 850, for full-day and half-day tracts, 
respectively. The analysis was assumed to be valid for a five year period. Error-
losses were generalised based on a scenario about what would happen if data were 
over- or underestimated. These are further discussed in Paper IV; basically, an 
underestimation would lead to increasing import of timber, with an extra cost of 
€ 38 m-3 over five years. If the errors of data lead to an overestimation, investments 
in new industry capacity and decreasing imports were considered in determining a 
decision-loss. In the case of overestimation, the extra cost was € 20 m-3 for five 
years. The β coefficients ranged from 0.027 to 0.039 and the standard deviation 
Std(Vha) for the volume per hectare ranged from 34.6 to 94.0 m3 ha-1. 
 

 



 36 

Results and discussion 

Paper II 
Focusing on specific planning periods in Scenario 1 provides information 
regarding how data quality influences the scenarios in the short term. In general, 
for all three scenarios (a, b, and c), the cuttings in the first planning period were 
delayed to the second planning period. A generalized pattern regarding standing 
volume was that initial estimates were rather accurate, followed by an 
underestimation in later planning periods. In the SPOT-based scenarios this is 
probably due to an overestimation of cuttings in planning period 2. The delayed 
cutting levels were a result of a slightly underestimated area of mature forest 
available for cutting. Deviations in the estimated standing and cutting volumes for 
each planning period, using a 3% interest rate, are presented in Fig. 10. In the 
laser-based scenario the cutting of 1 300 m3 was delayed to the second planning 
period. This error is more than 3.5 m3 ha-1, which on a larger scale would affect 
decision-making considerably. Also here, the descriptions of the initial standing 
volume were similar, independent of the data source, and closely match the true 
description. Due to differences in optimal treatment schedules between the 
scenarios, however, the estimated standing volume differs in subsequent periods. 
 

The results of the scenarios do not provide any evidence of major effects due to 
data quality with different interest rates. Comparing the two data sources, the laser-
based imputations tended to perform better in the scenario analyses. In general, the 
scenarios predicted greater mean deviations and mean absolute deviations when 
using the SPOT-based data. Overall, the mean deviation indicated an 
underestimation of standing volume independent of the effect in the harvested 
volume. More detailed results, summarizing the complete planning period, are 
presented in Table 6. 
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Fig. 10. The upper diagram presents the deviation of cutting volume, estimated using laser-
based (dark) and SPOT-based data (light) in future 5-year planning periods. The lower 
diagram presents the deviation of standing volume for the same landscape. An interest rate 
of 3% was used in the scenario analyses. 



 38 

Table 6. Mean deviation (Mean dev) and Mean absolute deviation (Mean abs dev) for 
standing volume, harvested volume and net income in Scenario 1 for different interest rates 
for ten planning periods. 
 

Method Interest 
Rate 

Standing volume 
(%) 

Harvested volume 
(%) 

Net income 
(%) 

  Mean 
dev 

Mean 
abs dev 

Mean 
dev 

Mean 
abs dev 

Mean 
dev 

Mean 
abs dev 

2% -3 4 -6 25 -1 3 Laser-
based 3% -2 4 2 25 1 27 
 4% -2 4 1 23 1 23 

2% -7 9 -5 30 -1 4 SPOT-
based 3% -8 11 3 42 1 45 
 4% -13 14 -5 30 -10 33 

 
The harvesting levels in the landscapes with different weights to different age-

class scenario analyses are presented in Fig. 11. Due to optimisation of net present 
value, typically most harvesting occurs in the first planning period. In Scenario 2a, 
the 5 000 ha area had an even age-class structure. The laser-based data initially 
overestimated the harvesting levels in the first planning period, but overall the 
cuttings were underestimated. A similar pattern could also be seen in the young 
landscape in Scenario 2b. In Scenario 2c, which mainly consists of both old and 
young forest, laser-based data underestimated the harvesting. However, summed 
over ten planning periods, the harvesting was overestimated with a mean deviation 
of 3% and 8% for the laser- and SPOT-based data, respectively. This is due to 
overestimation of stand age in the younger forests. 
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Scenario 2a - Harvesting

-40 000

-20 000

0

20 000

40 000

1 2 3 4 5

D
e
v
ia
ti
o
n
 (
m
3
)

Scenario 2b - Harvesting

-40 000

-20 000

0

20 000

40 000

1 2 3 4 5

D
e
v
ia
ti
o
n
 (
m
3
)
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Fig. 11. The deviation of cutting volume for scenarios on Landscape 2a, 2b, and 2c. 
Estimated using laser-based (dark) and SPOT-based data (light) in future 5-year planning 
periods. An interest rate of 3% was used in the scenario analyses. 
 

It is clear however, that there are large deviations looking at single planning 
periods. It can be stated that the laser-based data performed better than the SPOT-
based data. Independent of the data, errors of this size would most probably have 
an effect on the decision-makers. This is not surprising; in Wallerman & Holmgren 
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(2007) the poor composition of reference data are discussed. At the extremes of the 
reference data set, sparseness in the distribution of reference data might cause bias 
(cf., McRoberts et al., 2007). Maltamo et al. (2006) found that high volume plots 
were underestimated and low volume plots were overestimated due to the 
methodology using a similar method for imputation. Thus, the landscapes become 
averaged with an overrepresentation of the middle-aged forests. In the scenarios 
based on the imputation data, standing volume is underestimated and decreases 
over time. This is independent from harvesting levels which mostly are 
underestimated or delayed. This would probably also affect the cost of brushing 
and the proportions of the harvest whether timber came from final felling and 
thinning. 
 
Paper III 
The average decision losses are considerably lower when the simulated field-plot 
data are used instead of the imputation based data (Table 7). With a 4% interest 
rate the loss is generally lower than with a 2% interest rate. It is only in the case of 
using SPOT-based data that the loss is higher with the 4% of interest rate. Among 
the imputation based methods, the combination of laser- and SPOT-based data 
performed best, while using only SPOT-based data resulted in the highest average 
decision loss. 
 
Table 7. The average decision loss (SEK ha-1) for all stands 
and each method 
 

 Interest rate  

Method 2% 4% 

Field-plots (n=10) 86 18 
Field-plots (n=5) 133 33 
Laser & SPOT 769 346 
Laser 1028 756 
SPOT 1850 1925 

 
Summarising the average cost-plus-loss results, the field-plot method in general 

resulted in the lowest cost-plus-loss (Table 8). The cost-plus-loss tended to be 
lower with a higher interest rate. Furthermore, an increasing stand size decreased 
the average cost-plus-loss per hectare. 
 
Table 8. The average cost-plus-loss (SEK ha-1) for each method. Boldface indicates the 
best-performing method in each case. 
 

 Interest rate     

 2%   4%   

 Stand area     
Method 2 ha 5 ha 10 ha 2 ha 5 ha 10 ha 

Field-plot (n=10) 746 376 249 678 308 181 
Field-plot (n=5) 653 359 258 553 260 159 
Laser & SPOT 827 827 827 404 404 404 
Laser 1085 1085 1085 813 813 813 
SPOT 1872 1872 1872 1947 1947 1947 
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If only one inventory method is used, the average cost-plus-loss analysis favours 

the field-plot inventories. In Sweden, sample-plot inventory is considered too 
expensive for large-scale forest inventory. The decision loss based on the 
imputation based data is 5 to 40 times higher than the cost of inventory. In further 
developing the imputation methods, the improvement of data quality is of higher 
importance than reducing the inventory cost. However, when comparing the field-
plot inventories and the imputation-based data, caution is needed. The imputation-
based data are real data with only 64 observations and the average decision loss is 
affected by a few high values. The field-plot data are represented by 50 data sets 
for each stand and average decision loss will be an average value for all 50 
repetitions. A final conclusion is, however, that it would be more productive to 
improve data precision, and decrease decision loss, than to cut data acquisition 
costs. 
 
Paper IV 
To obtain an estimate of the optimum number of plots at the national level, given a 
certain tract type, the conditions within Region 3 (mid-Sweden) were assumed to 
hold for the entire country although the area of the country was substituted for the 
area of the region. In Table 9, the optimum number of tracts is presented based on 
calculations using Eq. 10. 
 
Table 9. Optimum number of tracts (5 yrs) per stratum and at the national level, separately 
for each tract type (if applied uniquely). 
 

 Region       

Tracts 1 21 22 3 4 5 Country 

Perm. 1 653 1 334 1 707 1 860 3 046 2 502 6 520 
Temp. 1 663 1 240 1 648 1 739 5 108 2 429 6 094 

 
Selecting mid-Sweden as a typical part of Sweden, results indicated that the 

Swedish NFI sample size should be about 1 219 using temporary tracts and 1 304 
for using permanent tracts if expected cost-plus-loss was minimised. This can be 
compared with the current level of 1 412 tracts. In Paper IV, an alternative 
approach was used to determine a “worst-case” cost-plus-loss, indicating that the 
sample size should be in the order of 2 500 tracts annually. As a rough conclusion, 
it could be stated that the current inventory sample size is in the right order of 
magnitude. However, it should be stressed that this assessment only considered 
using the NFI for determining harvesting level, whereas in reality it serves a large 
number of different purposes. 
 

Some of the simplifications made in the study may have overestimated the 
optimum sample size. For example, it is not likely that past data and conclusions 
are fully disposed of when new data and a new analysis are made. Indeed, it is 
likely that new results indicating very different harvesting levels would be treated 
with great caution. To some extent this was accounted for in the study, but in 
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reality decisions may not follow the calculated harvesting levels as strictly as was 
assumed in this study. 
 

Methods to enhance usability of spatially comprehensive data for 
forestry scenario analysis (Paper V-VI) 

As stated in Paper I, detailed data about the structure within a forest stand are 
sometimes required, often to the level of single trees. Furthermore, not only stand 
level data are required but also the composition and spatial configuration of stands 
within a forest landscape are essential information (e.g., Gustafson, 1998; Shifley 

et al., 2006). Knowledge about spatial patterns allows for more detailed forestry 
scenario analysis and several resource indicators even demand such data. Habitat 
suitability models are one example of a resource indicator that is strongly 
correlated with the structure of the landscape. Non-parametric methods for 
imputation can preserve between-variable consistency within a unit, but do not 
consider the consistency between variables in geographically nearby units. In 
Papers II and III the consequences of errors in data used in forestry scenario 
analysis were evaluated. Poor decisions were not only due to low accuracy in the 
sample-plot imputations but also the poor composition of data had an effect. Thus, 
in spatially comprehensive data, spatial consistency has to be considered when 
acquiring data for forestry scenario analysis, both within a forest stand and between 
forest stands. This issue is seldom stressed in data acquisition. 
 

Material and methods 

In Papers V and VI, two frameworks on how spatial consistency can be improved 
are suggested. Paper V provides an approach that can be used within a forest stand 
while Paper VI is a further development and provides an approach that can be used 
to capture spatially consistent data at the landscape level, also including the within 
stand variability. 
 
Details of the method and material for Paper V 
An overview of the framework suggested in Paper V is presented in Fig. 12. First, 
a definition of data quality and determination of target values are needed. 
Secondly, an initial description of the forest stand provides a starting point. Finally, 
an optimising search algorithm is used to modify the description to meet the 
variability targets. 
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Fig. 12. An overview of the method used in Paper V. 
 

Non-parametric methods can be used for acquiring spatially comprehensive data 
in a forest stand. Reference data assessed in field are imputed to the forest stand 
using carrier data. The carrier data contain at least one independent variable in 
every cell of the forest stand. In Paper V, the initial estimation was based on kNN 
(Tomppo, 1990; Nilsson, 1997). In this study, k was set to one. This is typically 
done when variable consistency within a unit should be preserved. Euclidean 
distance is used to determine similarity based on carrier data, C, between the target 
unit, t, and the reference unit, r. The Euclidean distance between points in n-space 
is defined as: 
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In the objective function, targets for data quality characteristics were determined. 

Three quality characteristics were determined in the objective function: 
• Correlation (C): pair-wise correlation between adjacent units within the 

forest stand; 
• Short range variance (SRV): average variance of units within a 3x3 units 

moving window; and 
• Accuracy (A); a measure of the accuracy of the estimated stand average 

value. 
Correlation and short range variance were used as metrics of spatial variability, 
whereas accuracy was used to fix the initial estimation. A target was set for these 
three quality characteristics. The accuracy target was determined by the initial 
estimation while the correlation target and short range variance were determined 
from the true state of the forest. The objective function was specified in the 
following way: 
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Here, w is the weight for the different components and t is the predetermined target 
value. In this study the weights were set to 1.0 for correlation and short range 
variance, and 0.5 for accuracy. 
 

Simulated annealing (SA) was used as an optimising search algorithm 
(Lockwood & Moore, 1993; Öhman & Eriksson, 2002; Pukkala & Kurttila, 2005). 
SA is typically simple to apply in complex problems, but does not necessarily find 
the global optimal solution. However, in general, a relatively good solution can be 
found within a reasonable amount of time. In brief, SA replaces a current solution 
with a randomly selected nearby solution. Better solutions (in terms of objective 
function value) are always accepted, whereas worse solutions are accepted with a 
probability, p, which depends on the corresponding objective function value (O) 
and the global parameter T (temperature): 
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With decreasing values of T, the probability of accepting worse solutions 
decreases. Initially, a high value of T is specified; then a cooling schedule is 
applied so that the temperature decreases until it is close to 0. The reason for this 
procedure is to allow the algorithm to escape from local optima. 
 

To find an alternative solution within the SA algorithm, the same basic principle 
as in the initial estimation was applied, although only for a few randomly selected 
units at each iteration. The kNN algorithm did not have to select the most similar 
units but instead a random number was selected in order to exclude a certain 
number of most similar reference units from being included in the imputation 
procedure. In the case study the random numbers were selected with uniform 
probability within the range of 1 to 20. This choice was made subjectively 
considering the variability in the carrier data set. 
 
Details of the method and material for Paper VI 
In Paper VI, a framework for improving the spatial consistency at a landscape level 
is proposed; the framework consists of four steps: 

1. The spatial configuration at landscape level is determined with remote 
sensing data using methods available for segmentation and classification. 

2. Total forest area is calibrated using NFI information. 
3. The composition at landscape level is captured by a newly developed 

restricted imputation technique. 
4. The composition and spatial consistency within stands is improved by 

rearranging imputed sample-plots (a) between stands and (b) within each 
stand. 

 
Landscape spatial configuration is considered as being accurately captured with 

available remote sensing data and methods for segmentation (e.g., Hagner, 1990; 
Pal & Pal, 1993; Pekkarinen, 2002) and classification (e.g., Lu & Weng, 2007). 
After the initial step, the landscape has been segmented into patches and each 
segment has been assigned a class label. Furthermore, with the aid of an error 
matrix, the forest area has been adjusted so that the area of forest land corresponds 
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to the area estimate based on NFI data (Czaplewski & Catts, 1992; Congalton & 
Green, 1999). Further details on the two initial steps are provided in Paper VI, 
however, the main focus in this study is on Steps 3 and 4. 
 

In Step 3, imputation is used to assign field-plot data to each pixel in the stands. 
This procedure preserves within-pixel consistency between variables but does not 
control within-stand variability or spatial consistency. Here, an algorithm similar to 
the way in which kNN was used in Paper V was used, but differs in some important 
aspects. Satellite data are used as carrier data, and sample-plot data from the NFI 
are imputed into the patches classified as forest stands. Contrary to ordinary 
imputation, each sample-plot in the reference data set can only be imputed into the 
target units for a limited number of times; each sample plot is represented in the 
reference set as many times as it should be found in the landscape according to the 
NFI data. This approach secures that the composition of the “wall-to-wall” 
landscape at the pixel level will be the same as the composition of the NFI data. 
 

The above kind of restricted imputation can be performed with different 
algorithms, each having its specific implication for the remaining parts of the 
imputation framework. The ambition is to obtain a close-to-final distribution of 
reference plots within stands. With the suggested method, the satellite image digital 
numbers are sorted in descending order both in target and reference units. Then, 
target and reference units are matched pair-wise in descending (or ascending) 
order. Following these steps of imputation, a landscape with forest data is obtained 
having the same composition, at the plots scale, as the NFI. However, the restricted 
imputation cannot assure that the composition in terms of stand level mean values 
or within-stand variability and spatial consistency are appropriately determined. 
 

According to the assumptions in the problem, the landscape composition in terms 
of stand level values is unknown, but within-stand variability is assumed to be 
known from case studies. The last step of the methodological framework, contain 
two parts: (a) the position of reference plots are exchanged between stands in order 
to improve within-stand variability (and indirectly, the composition of stand level 
mean), (b) the position of reference plots are exchanged within each stand to 
improve spatial configuration of stand data. 
 

Similar to the method in Paper V, optimisation is used to improve the within 
stand variability. However, Threshold Accepting (TA) was used for optimisation, 
which is a similar method to the SA algorithm (Dueck & Scheuer, 1990). The TA 
method was used because of the capability to stop the search when no more 
improvements are taking place. TA examines a single adjustment to a current 
solution, and accepts every new solution that is not much worse than the previously 
accepted solution (Bettinger et al., 2002). The initial solution was provided from 
the restricted imputation in step 3. Current solutions are then changed by 
rearranging the reference plots two by two. The difference between the last 
accepted solution and the new solution is determined ∆E. This value is computed 
with the deviation between the values of the objective function in the two solutions. 
An initial threshold level TTA is set by the user, and only if ∆E is less than TTA, the 
new solution is accepted. The process continues until no more improvements occur 
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during a user defined number of iterations. The threshold value is then made 
smaller (TTA=TTA-∆TTA). The process finally ends when one of the following three 
criteria are fulfilled: 1) the number of non-improving iterations exceeds a 
maximum level C; 2) the total number of search iterations exceeds a maximum 
level S; or 3) T reaches a user defined stopping point. 
 

The composition for each stand is expressed in terms of variance. An objective 
function for the landscape is then determined: 
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Here, Vari is the variance in each stand and tvar the target variance for the current 
stand. In an optimal solution the distance between target variance and variance is 0, 
thus, the TA was used for minimisation. The imputed reference plots are allowed to 
be rearranged within the complete landscape. The target values of each stand are 
typically determined by empirical data of typical forest stands. 
 

Once the previous optimisation algorithm has ended, a last step is to rearrange 
the plots within each stand to improve spatial consistency. TA was used also for 
this purpose, using pair-wise correlation, Corr, between adjacent units and short-
range variance, SRV, to determine the quality characteristics of spatial variability, 
as done in Paper V. The objective function is specified in the following way (Eq. 
15): 
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Here, t is the predetermined target values. Typically, empirical data from a sample 
of forest stands is used to determine the target values in the objective function. 
 
Case study with the method developed in Paper V 
The method for spatially consistent imputation was tested in a case study. Spatial 
consistency was considered for one forest variable: mean stem volume at plot level. 
A forest was simulated using a semi-variogram (Cressie, 1993) describing the 
variability of a northern Swedish forest stand (Fig. 13). In order to obtain stands 
with various characteristics three alternative stands were simulated by using 
different values for range in the semi-variogram. For each cell in the forest stand a 
digital number was simulated using a regression model; these data were used as 
carrier data (Fig. 14). The errors in the carrier data were assumed to be spatially 
independent. An independent set of reference data was also simulated, using 1 000 
uniformly distributed random numbers between 0 and 550 m3ha-1. Based on these 
simulated reference volumes, carrier data were simulated according to the 
procedures described above. Target values for correlation and short-range variance 
were determined by the stands, while the target for accuracy was determined by the 
initial volume estimate. 
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Stand 1 Stand 2 

  
Stand 3 Stand 4 

  
Fig. 13. Maps of the stands used in the case study of Paper V. The volume for each pixel is 
displayed according to the scale bar on the right side. 
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Stand 1 Stand 2 

  
Stand 3 Stand 4 

  
Fig 14. The simulated carrier data used for the stands in the case study. The digital number 
in each pixel is displayed according to the scale bar on the right side. 
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Case study with the method developed in Paper VI 
The two last steps of the framework were evaluated in a case study using similar 
routines as in Paper V to provide test data. Nine stands were included in the case 
study, each of the stands were assumed to be 16 hectares large, square shaped, and 
each comprising 400 pixels (20x20 m pixel size). For stands with high volumes the 
same semi-variogram was used as in Paper V. By changing the sill (the maximum 
semi-variance), four alternative semi-variograms were used for forest stands with 
lower volume. The sill was changed in such a way that non-negative values of 
forest volume were attained in each stand. The semi-variograms and the simulated 
standing volume in each stand are presented in Table 10. Furthermore, a map of 
the simulated landscape is provided in Fig. 15. 
 
Table 10. Overview of the semi-variograms and the 
target standing volume in the simulation of the forest stands. 
 

 Sill Nugget Range Volume 
(m3 ha-1) 

Stand 1 10 0 31 10 
Stand 2 100 0 31 50 
Stand 3 1000 0 31 100 

Stand 4 1000 0 31 150 
Stand 5 2500 0 31 200 
Stand 6 2500 0 31 250 

Stand 7 4753 0 31 300 
Stand 8 4753 0 31 350 
Stand 9 4753 0 31 400 

 
Carrier data were simulated using the same formulas as in Paper V. A sample of 

reference data were acquired with simple-random sampling without replacement 
(Thompson, 2002). In total, 10% of the pixels were selected with stand data and 
carrier data. Since the sampling proportion was 10%, each sample plot and carrier 
data value was replicated ten times in the reference data set used for the restricted 
imputation. 
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Fig. 15. Map showing the nine simulated forest stands in the landscape, the average 
standing volume according to the scale bar at the right side (m3 ha-1). 
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Results and discussion 

Case study results and discussion for Paper V 
The results show that it is possible to improve the spatial consistency in the 
estimations (Table 11). In 3 out of 4 stands the algorithm reaches the targets values 
in the objective function. In Stand 4, which had the most demanding targets, 
accuracy and short-range variance were achieved. However, the correlation could 
only be improved to 0.75 compared to the target of 0.81. 
 
Table 11. Results from Paper V. Boldface indicate successful results and italic non-optimal 
results. SCI is the spatially consistent imputation. 
 

  Stand 1 Stand 2 Stand 3 Stand 4 

Accuracy Target 308 246 249 253 
 Initial 308 246 249 253 
 SCI 308 246 249 253 

Target 0.51 0.36 0.67 0.81 
Initial 0.02 -0.01 0.04 -0.01 

Correlation 

SCI 0.51 0.36 0.67 0.75 

Target 3 033 3 873 1 973 1 056 Variance 
(short-range) Initial 20 110 10 021 9 527 9 094 
 SCI 3 033 3 873 1 973 1 056 

 

Maps of Stand 1 and 2 are presented in Fig. 16 and Stand 3 and 4 in Fig. 17. Based 
on the random structure from the initial imputation, spatially consistent imputation 
improves the variability of the forest stand. The pattern in the maps may look 
smooth although the variability between some pixels is very high. 
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Stand 1 – initial estimation Stand 1 – improved estimation 

  
Stand 2 – initial estimation Stand 2 – improved estimation 

  
Fig. 16. Left column maps show the stand after the initial imputation based on kNN. The 
right column maps are the same stands but when spatially consistent imputation has been 
used. Volume in each pixel is displayed in the scale bar at the right side of each map. 
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Stand 3 – initial estimation Stand 3 – improved estimation 

  
Stand 4 – initial estimation Stand 4 – improved estimation 

  
Fig. 17. Left column maps show the stand after the initial imputation based on kNN. The 
right column maps show the same stands when spatially consistent imputation has been 
used. Volume for each pixel is displayed in the scale bar at the right side of each map. 
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A positive effect of the improvement of spatial consistency was that variability, 
in terms of distributions of estimated stem volume in each pixel, was clearly 
improved (Fig. 18). No quality characteristics to enhance the variability were 
directly included in the objective function. For many variables a correct 
distribution of data would be valuable in the simulation of stand development. 
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Fig 18. Variability within Stand 1, in terms of distributions of estimated stem volume in 
each pixel. The simulated reference data are given by the dashed line, the initial kNN 
imputation by the dotted line, and the result of the spatially consistent imputation by the 
solid black line. 
 

The case study results illustrate that the proposed algorithm is useful for spatially 
consistent imputation within forest stands. Some possible improvements can be 
concluded. The carrier data do not consider the spatial dependency of errors that 
often occur in remote sensing data (Lillesand & Kiefer, 2000). When using more 
realistic carrier data, more information on the spatial patterns would probably 
improve the possibility of deriving a spatially accurate estimation. In that case the 
time efficiency would also be improved. Another possible improvement would be 
to further evaluate metrics to determine spatial consistency. Whether or not this 
problem could be solved using a semi-variogram approach was not tested, and 
further studies are needed in order to evaluate the spatial variability metrics which 
would be most appropriate to use. However, the spatial consistencies of the 
estimations were considerably improved. 
 

For practical use of the algorithm there are some issues that have to be 
considered. In the case study, target values were assumed to be known from pilot 
studies, however, this method could probably also be used in practice. Solution 
time is another critical issue, although efficiency was not a priority in the 
development of the currently used software. Most critical, however, is the 
performance when spatial consistency of multiple variables is considered. In the 
case study, only one variable was considered. In operational applications, the 
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demand for spatial consistency in general would involve several variables in the 
reference data set, such as, tree age, tree species composition, and site conditions. 
Different solutions to this problem are possible. One simplistic approach would be 
to consider spatial variability only for one variable, but select a variable known to 
have high correlation with other plot variables. Volume actually could be such a 
variable. Another solution would be to extend the algorithm with variability targets 
for more than one variable. In principle this is straightforward, although it is likely 
that the algorithm would encounter problems to reach all the targets. Solution times 
are likely to be extended and it would probably also be important to have a large 
reference dataset. 
 
Case study results and discussion for Paper VI 
The average variance for the nine stands in the forest landscapes was 2 193   
(m3 ha-1)2. The initial solution based on the restricted imputation resulted in an 
average variance of 12 284 (m3 ha-1)2. Rearranging the reference plots in the 
landscape and by minimising Eq. 14, an average variance of 2 230 (m3 ha-1)2 was 
reached. The results of the rearrangement in each forest stand are presented in 
Table 12. In nearly all cases the final solution was close to the true value. The main 
problems were in the two stands with the lowest volume, Stand 1 and Stand 2. Here 
the final C and SRV were too high. The required number of iterations in the 
optimisation of each stand was between 1 200 and 2 500. 
 
Table 12. Results from the improvements of the spatial configuration within each forest 
stand. Number of required iterations is presented as well as initial values from the 
restricted imputation and the final values after the optimisations. Boldface values indicate 
where the target was reached and italic values where it was not reached. 
 

 Iterations C   SRV   

  Initial Final True Initial Final True 

Stand 1 2 400 0.00 0.66 0.49 2 565 54 6 
Stand 2 2 564 -0.01 0.65 0.45 10 391 94 66 
Stand 3 1 835 0.05 0.50 0.50 15 550 612 611 

Stand 4 1 275 0.09 0.47 0.47 14 271 661 662 
Stand 5 1 377 0.07 0.54 0.54 13 081 1 410 1 410 
Stand 6 1 376 -0.06 0.41 0.41 14 768 1 768 1 769 

Stand 7 2 006 -0.06 0.49 0.49 14 342 3 120 3 118 
Stand 8 1 297 0.04 0.41 0.41 12 327 3 152 3 152 
Stand 9 1 375 0.01 0.43 0.43 11 961 3 123 3 214 

 
A map of the initial solution provided by the restricted imputation is presented in 

Fig. 19. These data serve as the initial solution for the optimisation algorithm. Due 
to the saturation effects in the carrier data and the random errors in the simulations 
of carrier data, stand borders are difficult to distinguish. 
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Fig. 19. Map showing the average standing volume in the nine forest stands in landscape 
after the restricted imputation in Step 3. Average standing volume in each pixel is according 
to the scale bar at the right side (m3 ha-1). 
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Fig. 20. The final results represented in map form showing the average standing volume in 
the nine stands of the forest landscape. Forest volume is according to the scale bar at the 
right side (m3 ha-1). 
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In the final solution presented in Fig. 20 stand borders are possible to identify 
and the within-stand variability is more similar to the simulated data in Fig. 15. 
One effect of the rearrangement of data is that the positions of individual stands 
have changed. However, the distribution of stands with different volumes is close 
to the true state. An overview of the average forest volume is presented in Table 
13. 
 
Table 13. Average volume of the forest stands during the optimisation. Initial values are 
from the restricted imputation and the final values are from after the optimisations. 
 

 Volume (m3 ha-1) 

 Initial Final True 

Stand 1 34 16 10 
Stand 2 115 107 52 
Stand 3 171 54 102 

Stand 4 183 238 146 
Stand 5 209 119 201 
Stand 6 231 272 247 

Stand 7 242 174 282 
Stand 8 263 341 368 
Stand 9 274 402 388 

 
Research on how spatially comprehensive data for forestry scenario analysis 

should be assessed is sparse. The framework suggested here is one possible 
approach, whereby data-introduced errors in the scenario analysis result can be 
avoided. Overall the presented solution in the case study performs as expected. 
However, in this thesis the methodological framework is only outlined in coarse 
terms, and further research and development is required before the framework can 
be applied in practice. 

 

Discussion 

Methods to evaluate data acquisition strategies 

Evaluating data acquisition strategies is not straightforward. In the development of 
new inventory methods, the evaluation of data quality are often limited to the 
accuracy of single variable estimates as the only quality characteristics. The 
connection between forest inventory and the usability of data including the 
consequences of data quality in the decision-making are often weak. However, 
there are studies and methods that connect forest inventory and decision-making 
(see Duvemo & Lämås, 2006). With more complex forestry planning problems, 
and with more advanced decision support systems, these methods are limited in 
their ability to evaluate data acquisition strategies. New means to evaluate data 
acquisition strategies in multi-resource forestry are needed, as well as evaluation 
on the usability of inventory data at the national level. 
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In Paper I, a framework for evaluating data acquisition strategies was proposed. 
The method is applicable in practical applications, but would include some 
subjectivity since it is based on the knowledge and experience of the user. 
However, based on prior knowledge provided by the research community it can be 
used as a support when making decisions about forest inventory. The unique 
possibilities are that multi-resources and national level requirements can be 
considered, which could be valuable in future national forestry scenario analysis 
(e.g., Gustafsson, 2000; Lämås & Eriksson, 2003). 
 

In Paper II, a simulation approach was used to study the effect of data quality in 
connection to decision-making. With this approach the effects of data on decision-
making can be evaluated for multi-resource analyses, and also spatially 
comprehensive data can be considered during the analysis. Using more advanced 
decision support systems such as Heureka (Lämås & Eriksson, 2003) or Monsu 
(Pukkala, 2004), the consequences of data quality on different resources could be 
studied. It would be a relevant approach at the national level and can be used in 
practice when a data acquisition strategy for a certain forestry scenario analysis is 
evaluated. However, the analysis is complex due to many correlated results, such 
as cutting volume and standing volume. An exact comparison on the effect of data 
between different resources is not a simple task. With a national economic 
approach, the decision loss could be considered and a comparison between data 
acquisition strategies could be done. This would still be rather complex and require 
simplifications. 
 

The simulation approach has been used in many studies, but with the means of 
cost-plus-loss (Holmström, Kallur & Ståhl, 2003; Eid, Gobakken & Næsset, 2004; 
Holopainen & Talvitie, 2006). This approach was used in Paper III. The 
advantages are that it summarises the effect over the complete planning period and 
different acquisition methods can easily be compared in a numerical approach. A 
drawback is that only net present value is considered and it is difficult to evaluate 
resources that cannot be defined in monetary terms. In analysis at the national level 
there are no direct connections between inventory cost and the loss in net present 
value at the forest stand level. Thus, this type of analysis is more relevant at the 
level of the forest owner. From the perspective of national level forestry planning, 
these analyses are valuable for providing more knowledge on different data 
acquisition strategies. 
 

An analytical approach of cost-plus-loss was used in Paper IV. The cost of 
inventory at the national level was linked with decision loss in the forest industry. 
Here an assumption was made that the decision loss in the forest industry affected 
the national level with the same strength. The aim was to determine an appropriate 
accuracy level for NFI data when data are used to determine national sustainable 
harvesting levels. The results give an indication of the order of magnitude the 
sample size of a NFI should be. Generally, this is not known. As in most 
applications of cost-plus-loss analysis, the weakest parts are the loss functions. 
Here, the loss function was based on a typical scenario. The scenarios can be 
determined in many different ways, and are dependent on the knowledge and 
experience of the user. A general limitation of the method is that only sampling 
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intensity is optimised and an evaluation using spatially comprehensive data would 
be difficult. Another difficulty is in determining the loss where multiple decisions 
are involved. However, this method is able to numerically determine a minimum 
accuracy level. 
 

When suggesting an overall method to be used in planning a forest survey, 
evaluation would include many of the tools listed above (or similar methods). 
Planning data acquisition strategies for national forestry scenario analysis involves 
decisions that are dependent upon the experience and knowledge of the decision-
maker. There is no complete tool for an evaluation of data acquisition strategies in 
different decision situations, especially when multiple resources are considered in 
national forestry scenario analyses. However, the evaluations of different data 
acquisition strategies are important, especially those where data are linked with 
decisions. The knowledge gained from numerical evaluations will make a good 
basis when a final decision is made as suggested in Paper I. A wider evaluation of 
data acquisition strategies in the early stages in the development of inventory data 
is valuable. As an example, Wallerman & Holmgren (2007) considered tree species 
composition and within-stand variability in addition to accuracy in their evaluation 
of spatially comprehensive data. 
 

Data acquisition strategies for forestry scenario analysis 

In Paper I arguments for spatially comprehensive data are given. Detailed data on 
single trees and information about landscape patterns are required in many 
applications. Evaluations were done in Papers II and III, mainly in timber oriented 
forestry scenario analyses based on such data. The accuracy of the different carrier 
data has an impact on the results: the performance of the laser-based data is 
considerably better than the SPOT-based imputation. This is reported in both 
studies. Laser-based data have been evaluated with simulated cost-plus-loss 
analysis and produced similar results, but using stand based data. Eid, Gobakken & 
Næsset (2004) compared laser scanner data with photo-interpreted data and 
concluded that laser data were more efficient. Holopainen & Talvitie (2006) 
concluded that when inventory costs were also considered, the field based 
inventory was still more efficient than the laser-based data. However, in larger 
landscapes the lower cost of remote sensing data would favour these methods. 
 

In the evaluation scenario analysis in Paper II the cutting schedule is slightly 
delayed and the harvesting is overestimated, probably due to a poor composition of 
the landscape data. The poor results obtained when using accurate laser scanning 
data may be due to the methodology. An early evaluation of the laser data 
concluded that the accuracy level was good enough for forest planning, but that 
poor tree species composition and poor within-stand variability would be 
problematic (Wallerman & Holmgren, 2007). Maltamo et al. (2006) presents some 
examples on predicted volume at plot level, estimated with a non-parametric 
method. In their study, a saturation effect could be noticed in the aerial photograph, 
while the laser scanner data were considerably better. However, due to the 
methodology, it was impossible to find suitable neighbours for high values in the 
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laser scanner data, and these were therefore underestimated. Correspondingly, the 
estimated plots with low values were overestimated. 
 

The decision loss that was used in the cost-plus-loss analysis in Paper IV would 
have a direct effect on the budgets of the Swedish forest industries. Thus, if these 
data had not been available from the authorities, it would be economically 
motivated for the forestry sector to acquire these inventory data. However, the NFI 
data are required for many other decisions and reporting, and the inventory cost 
should therefore be well-motivated for the governmental organisations as well. 
 

In Paper IV, the accuracy level of the Swedish NFI is motivated just for the use 
of one single decision. This does not necessarily mean that more forest data are 
required, but it is conceivable to conclude that detailed forest data would be 
beneficial to the assessment. In cost-plus-loss analysis, the decision loss seems to 
be more critical than inventory cost. In Paper III, the more expensive sample-plot 
data is still the most efficient data acquisition strategy when inventory cost is 
considered (cf., Holopainen & Talvitie, 2006). Thus, the value of forest data 
should not be underestimated. 
 

Enhance data usability 

Evaluating spatially comprehensive data in national forestry scenario analysis 
indicates that decisions are affected by poor quality data. Spatially consistent data 
are required and improvements on the methodology seem to show high potential. 
In Paper V, the spatial consistency is improved within a forest stand, with a 
methodology that considers adjacent units. The method can utilise much of the 
spatial information in the carrier data and could be useful in large stands or in areas 
with no distinct stand borders. A positive effect of the method for managed forest 
areas is the ability to capture the variability within the forest stand. The spatial 
consistency within a forest stand may not be as critical as between stand 
consistency at the landscape level. Enhancement of spatial consistency at the 
landscape level is more complex. Based on the knowledge from Paper V, a concept 
is suggested in Paper VI as to how this issue can be handled on the landscape level. 
 

A major challenge in Paper V was how to describe spatial consistency. The 
metric has to determine the variability between the variables in such a way that the 
accuracy of important spatial characteristics is determined. Within a forest stand, 
the semi-variogram can be used to describe the variability (Cressie, 1993). Also 
simpler metrics, used in Paper V, seem to be able to improve the spatial patterns as 
well. However, which is the most efficient and accurate approach has not been 
evaluated. 
 

Determining the arrangement of different forest stands at the landscape level is 
complex. A first attempt was to use a similar approach as in Paper V at the 
landscape level. There are a large number of different landscape metrics that are 
used to explain the patterns of a forest landscape (Gustafson, 1998). The aim of 
such an approach would be to improve the accuracy of the landscape metrics that 
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are of interest for the forestry scenario analysis. However, the NFI data do not 
provide any information of the spatial configuration in the landscape, at least not in 
Sweden. Thus, it was asserted that configuration should be adequately enough 
captured with remote sensing data. On the other hand, overall landscape 
composition at the scale of plots is available in the NFI data. This was utilised by 
assuring that the composition in the “wall-to-wall” data should be identical to that 
in NFI data.  
 

In common for both of these methodologies, but most important at the landscape 
level, is that the exact positions of different resources are not necessary in a 
national forest scenario analysis. In strategic planning at national level, 
sustainability of different resources is analysed. The aim of the decision-maker is 
to make sure that all resources are available in a landscape over time, but does not 
necessarily need to provide the geographic location of these resources. This would 
not be the case in a scenario analysis of a landowner who needs to know where 
different timber assortments are found and where to allocate conservation areas. As 
an example, the aim of analysing the clustering of harvesting activities (Öhman & 
Lämås, 2003) could be different depending on the aim of a scenario analysis. For 
the landowner, the aim would be to optimise machinery cost and logistics and 
subsequently to know where and when to cut different stands. In a national forestry 
scenario analysis, the aim would be to improve the analysis with more details in the 
prognosis or studying the overall effect in optimising cutting locations. In this case 
it is important that the initial data accurately describe the spatial distribution 
between different stand types. 

 

Conclusions 

A generic approach of cost-plus-loss analysis can be used to find arguments in the 
discussion about different data acquisitions strategies. By considering data 
requirements of the resource indicators and the tools that will be used in the forest 
scenario analysis, much of the minimum data requirements can be recognized. By 
linking data requirements to the quality characteristics of data, data acquisition 
strategies can be ranked. This approach would be useful in practical planning of 
forest surveys, especially in national forestry scenario analysis where multi-
objective resources are considered. 
 

Numerical methods can be used to evaluate data acquisition strategies in 
applications for specific decisions. These methods provide valuable knowledge in 
the planning of forest survey and when data acquisition strategies are being ranked. 
Furthermore, in the development of data acquisition strategies, it is important that 
the evaluation links data quality with decision-making. These approaches may be 
best applied in a research environment in order to then pass on knowledge to the 
users. 
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In Paper II, it is clear that data quality will influence the decision. In the 
evaluation of spatially comprehensive data the more accurate laser-based 
imputation performed better than the SPOT-based imputations. However, the poor 
composition of the landscape data affected the cutting patterns. Total cutting 
volumes were delayed in time and affected the decision. The usability of these data 
in a national forestry analysis is dependent on an improvement of data 
composition. This was also concluded in Paper III due to the very high decision 
losses in contrast to the inventory costs. 
 

The accuracy level of the Swedish NFI is appropriate if the inventory data would 
be used only to determine national sustainable harvesting levels. A conclusion is 
that the current level of data acquisition is economically motivated and reducing 
the accuracy level would not reduce the total cost-plus-loss. Considering that these 
data are also used for making many other decisions, a wider cost-plus-loss analysis 
may motivate an improvement of the current accuracy level. 
 

Spatial consistency within a forest stand can be improved with new imputation 
algorithms. This might be especially useful in forestry scenario analyses at national 
or sub-national level, where reference sample-plot data are available from national 
forest inventories and carrier data can be cost effectively assessed using remote 
sensing. This type of data is already available in many countries, including 
Sweden. However, the methodology is only suitable for national level policy-
making and the case studies made in Papers V and VI are simplifications. Thus, for 
use in practical applications, further development is required. 

 

Future research 

There are several possibilities for further development of the methods for 
evaluating data acquisition strategies. However, it is not likely there will ever be a 
“complete” method available to evaluate the consequences of using different data 
sources as a basis for decision-making. Thus, planning forest surveys will always 
include a good proportion of uncertainty. Formal evaluation techniques in many 
ways provide good support to the decision-maker when planning a forest inventory. 
For example, simple methods to determine data usability would be valuable to 
apply at early stages of the development of new data acquisition strategies. This is 
important since data requirements continue to increase over time and there is still 
need for substantial improvement of the data acquisition methodologies. Further 
development of the methodology for assessing spatially comprehensive data is 
required, and the methods suggested in this thesis have not yet been tested in 
practise. A major challenge, which has not been considered in this thesis, is how 
spatially comprehensive data should be acquired for the tactical and operational 
planning levels. Thus, further research is needed, and this work has just started! 
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Sammanfattning på svenska 

Den här avhandlingen behandlar frågor som berör datafångst för planering av skog över 
stora områden, främst på regional och nationell nivå. Beslut inom skogsbruket har under de 
senaste decennierna blivit mer komplexa, då såväl ekonomiska, ekologisk och sociala 
värden väger tungt när samhällets sätter upp mål för att nyttja skogens resurser. Som en 
följd av detta utvecklas nya, mer avancerade, prognos- och planeringssystem som kan 
användas för att samlat planera nyttjandet av skogens resurser. Att kombinera analyser av 
många olika resurser ställer dock höga krav på skogliga data. Som komplement till de data, 
insamlat i nationella fältinventeringar, som tidigare var tillräcklig för att göra skogliga 
scenarioanalyser på nationell nivå, krävs i många fall även data på landskapets 
sammansättning. Dessa rumsligt heltäckande data är nödvändig för att kunna inkludera 
vissa resurser i en scenarioanalys, som till exempel vissa indikatorer för biodiversitet. 
Rumsligt heltäckande data möjliggör också mer detaljerade prognoser. Risken för 
stormskador eller effekter av olika skötselstrategier kopplat till markägare är två exempel på 
hur analyser kan bli mer detaljerade. För att försörja nationella prognos- och 
planeringssystem med skogliga data, behövs en kombination av data från flera källor. 
Heltäckande beskrivningar av landskapet kan erhållas med fjärranalys, exempelvis 
satellitbilder eller flygburna laser skannrar. Mer detaljerade data kan mätas in i provytor 
genom nationella fältinventeringar. Flera datakällor kan sedan kombineras genom 
imputering, och heltäckande data med trädlistor som beskriver skogstillståndet för varje 
enskilt bestånd i landskapet kan skapas. 

Syftet med den här avhandlingen är att utvärdera olika strategier för datafångst och att 
testa ett antal metoder för att utvärdera dessa strategier. Ett stort fokus ligger också på att 
förbättra redan gällande metoder för imputering, så att data blir bättre anpassat för skogliga 
prognos- och planeringssystem. I avhandlingen ingår totalt sex studier. I studie 1 beskrivs 
vilka komponenter som igår i ett prognos- och planeringssystem, och vilka krav detta har på 
dataförsörjningen. I kombination med egenskaper hos olika datafångstmetoder kan ett 
resonemang kring olika datakällors lämplighet avgöras. En slutsats i denna studie är att 
ingen av våra tre nationella datakällor ensamt kan förse en skoglig scenarioanalys på 
nationell nivå med skogliga data. I studie 2 och 3 utvärderas två imputeringar av provytor 
som indata i ett prognos- och planeringssystem där bärardata i de båda fallen baseras på 
flygburen laser och satellitbilder. I studie 2 studeras utfallet i olika planeringsperioder med 
syfte att studera effekterna av de olika datakällornas påverkan på beslut som fattas på 
regional- och nationell nivå. I studie 3 används cost-plus-loss med simulering som 
utvärderingsmetod. I båda studierna blir slutsatserna att metoderna för imputering bör 
förbättras för att data skall uppnå en kvalité lämplig för skogliga scenarioanalyser. I studie 4 
används en analytisk cost-plus-loss för att utvärdera behovet av nationella data för att 
bestämma en uthållig avverkningsnivå. Analysen baseras på ett scenario för att beräkna 
kostnadsförlusten då beslut fattas på felaktiga data. Slutsatsen blir att dagens nivå på den 
svenska Riksskogstaxeringen är i linje med det beräknade behovet. Beräkningarna är dock 
förenklade och bortser ifrån att data används som underlag till en rad andra beslut och 
rapporteringar. I de två avslutade studierna föreslås nya metoder att skapa rumsligt 
heltäckande data som kan användas i prognos- och planeringssystem. I studie 5 föreslås en 
utvecklad metod av imputering som tar hänsyn till variation och spatial konfiguration inom 
ett bestånd. Enklare test visar på lovade resultat. I studie 6 presenteras ett ramverk för att 
skapa realistiska beskrivningar av ett helt landskap. Ett vanligt problem är ofta att arealen av 
den yngre och äldre skogen underskattas. För att komma till rätta med det föreslås en 
modifierad metod av imputering där landskapets komposition först uppskattas baserat på 
fältinventeringar. Optimering används sedan för att flytta omkring imputerat data för att på 
så sätt skapa realistiska bestånd. Även här visar enklare tester lovande resultat som kan 
användas för datainsamling på nationell och regional nivå. Vidare utveckling är dock 
nödvändig för att kunna använda metoden i praktiska tillämpningar. 


