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Abstract 

Zida, D. 2007. Impacts of forest management regimes on ligneous regeneration in the 
Sudanian savanna of Burkina Faso. Doctor’s dissertation. ISSN 1652-6880, ISBN 978-91-
576-7365-7 
 
Annual early fire, selective tree cutting and grazing exclusion are currently used to manage 
the State forests of the Sudanian savanna of Burkina Faso, West Africa. Such prescriptions, 
however, are not based on experimental evidence. The long-term effects of such 
management on seedlings and saplings and the germination of selected tree species are 
discussed. Seedling quality attributes are also assessed. Studies over a 10-year period 
examined the effects of the three management regimes on species richness and population 
density. Burkea africana Kook, f., Detarium microcarpum Guill. et Perr., Entada africana 
Guill. et Perr., and Pterocarpus erinaceus Poir. seed germination was tested for different 
temperatures, light conditions, dry heat treatments and scarification methods. The quality of 
Acacia macrostachya Reichenb.ex DC. and P. erinaceus planting stock was evaluated in 
relation to nursery production period; field performance was assessed with and without 
watering.  
 
Fire, grazing, and selective tree cutting acted independently on sapling and seedling 
population dynamics. Early fire reduced sapling recruitment; moderate grazing had no 
significant effect. Although the overall seedling population density was not affected by any 
of the treatments, fire and grazing had strong effects on single-stemmed seedling density. 
Ordination using Principal Component Analysis of the seedling population data revealed 
species-specific responses to treatments, in particular an increase of lianas compared to 
other species. D. microcarpum and E. africana seeds did not exhibit dormancy. Exposing B. 
africana seeds to 95-97% sulphuric acid for 15–20 minutes broke their physical dormancy. 
All seeds tested were neutrally photoblastic, with an optimal germination temperature of 
25–35°C. E. africana, however, germinated over a wider temperature range. P. erinaceus 
seeds did not tolerate heat shock; while D. microcarpum and E. africana seeds responded 
positively at low intensity. Eighteen months after outplanting, survival and growth of 
Acacia macrostachya and Pterocarpus erinaceus seedlings were not affected by their initial 
size. Drought and non-drought factors affected seedling survival. Performance of P. 
erinaceus seedlings could be predicted from initial root collar diameter; more data will be 
required to build a reliable model. 

 
This thesis recommends the use of annual early fire as a forest management tool to be 

continued if timing, weather conditions and other factors affecting fire intensity are given 
due consideration. Moderate level of grazing does not affect seedling and sapling 
recruitment. The current prohibition on grazing State forests may need revision to allow 
multiple-use management. The low seedling density of socio-economically valuable species 
indicates that natural regeneration could be supplemented by planting high quality 
seedlings. 
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disturbance; West Africa 
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Introduction 

African Savanna biome 
The savanna biome comprises wooded grassland characterized by the presence of 
a xeromorphic, fire tolerant grass layer (Menaut, Lepage & Abbadie, 1995). The 
savanna is also defined as the transition between closed forest and grasslands or 
deserts (Breman & Kessler, 1995). Many classification systems for the African 
vegetation have been proposed (White, 1983), but the major categories range from 
rainforests to grasslands or steppes. The savanna areas are mainly classified as 
savanna woodlands, tree and shrub savannas, grasslands or steppes (Menaut, 
1983; Scholes & Walker, 1993). In Africa, the savanna area is divided into two 
distinct regions: the northern hemisphere (also known as the Sudanian region) 
with humid and arid woodlands and the southern hemisphere (also known as 
Zambezian region) occupied by the miombo woodlands (Menaut, Lepage & 
Abbadie, 1995). 
 

The Sudanian region lies between 6º and 13º N and covers an area of 5.25 
million km2 (Menaut, Lepage & Abbadie, 1995). The Sudanian savanna stretches 
across the African continent from Senegal in the west to the Ethiopian highlands 
in the east and is characterized by a dry season lasting 6-7 months and a mean 
annual rainfall between 700 and 1200 mm (Menaut, Lepage & Abbadie, 1995). 
The density and size of trees are higher in the savanna woodland formation than in 
the tree and shrub savannas, and the woody plants often have a distinct tree 
stature. The Sudanian savanna woodland is more open, less species rich and has 
smaller trees than the Zambezian woodlands (Menaut, 1983) owing to the higher 
ambient temperatures caused by lower altitudes and dry “harmattan” winds from 
the Sahara. Both the Sudanian and the Zambezian woodlands are typically burnt 
each year during the dry season and repeated burning has exerted a strong 
selective pressure in favour of fire resistant species (Scholes & Walker, 1993; 
Menaut, Lepage & Abbadie, 1995). The woody vegetation has tended to disappear 
as a result of climatic and anthropogenic impacts, and relatively small patches are 
left within the savanna biome (Menaut, Lepage & Abbadie, 1995). For example, 
estimates put the rate of deforestation in Burkina Faso at 0.2% per year (FAO, 
2001). Because they are ecologically and socio-economically valuable, sustainable 
management of the savanna woodlands has become a growing global concern. 
 
Regeneration of woody species in Sudanian savanna 
Regeneration is generally defined as a process by which plants replace or re-
establish themselves through sexual (from seed) or/and asexual reproduction. 
Regeneration by seed encompasses an array of processes from seed germination 
and emergence to subsequent survival of seedlings (Bullock, 2000). The process 
requires there to be viable seeds at the regeneration site. Generally, there are two 
seed sources: seed rain (seeds recently dispersed to the site) and the soil seed bank 
(stored viable seeds on or in the soil). Seed germination is the protrusion of the 
radicle through the seed coat followed by elongation of the plumule (Fenner & 
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Thompson, 2005); this is governed by a number of factors, including dormancy 
(an evolutionary adaptation to delay germination after the seed has been shed from 
the plant) and suitable environmental conditions such as soil moisture, light and 
temperature. These germination-regulating factors exhibit a great inter-specific 
variation as shown in many studies (Teketay & Granström, 1997; Baskin & 
Baskin, 1998; Tigabu & Odén, 2001; Teketay, 2002). Seeds of the majority of 
savanna trees are dormant; physical dormancy is the most common type (Baskin & 
Baskin, 1998). Physical dormancy is the result of a hard and impermeable seed 
coat that acts as a barrier to the uptake of water and diffusion of oxygen into the 
embryo. Under natural conditions, this barrier is disrupted by high temperatures, 
abrasion by soil particles, fire and ingestion by herbivores and birds (Miller, 1995; 
Baskin & Baskin, 1998; Razanamandranto et al., 2004). By simulating these 
natural phenomena, a variety of pre-sowing treatments such as hot water, 
sulphuric acid, and mechanical scarification have been used and have proved 
successful in overcoming physical dormancy (Bewley & Black, 1994; Teketay, 
1996; Baskin & Baskin, 1998; Tigabu & Odén, 2001). The period between seed 
germination and establishment is the most vulnerable stage in the life cycle of 
plants, since the seedling is susceptible to damage as a result of unfavourable 
conditions such as drought (Kitajima & Fenner, 2000) or disturbance factors such 
as fire or grazing (Fenner & Thompson, 2005). 
 

Most savanna tree species also regenerate vegetatively from dormant or newly 
formed buds on parent stumps, roots or other tissues (Olivier & Larson, 1996) 
following disturbances such as fire, herbivory and cutting (Bellefontaine, 1997; 
Gignoux, Clobert & Menaut, 1997; Bellefontaine et al., 2000; Bationo, Ouédraogo 
& Guinko, 2001; Sawadogo, Nygård & Pallo, 2002; Ky-Dembele et al., 2007). 
Several vegetative regeneration mechanisms have been identified among savanna 
species; namely seedling sprouting, epicormic sprouting or water sprouting, 
coppicing or stump sprouting, root suckering, and layering. The relative 
importance of each mechanism is different (Bellefontaine, 1997; Ky-Dembele et 
al., 2007). Layering (propagation by forming roots on branches), for example is of 
very little importance (Ky-Dembele et al., 2007); it is a rare regeneration 
mechanism within the savanna biome. Individuals of sexual and asexual origin 
differ in their survival and growth rates, dispersal distance, phenology of offspring 
production and establishment (Winkler & Fischer, 2002). Seeds can be dispersed 
over long distances, while clonal dispersal is rather limited but has a higher 
establishment rate than seedlings. Vegetative shoots of clonal recruits grow faster 
than newly established seed-derived plant because of their well-established root 
system (Hoffmann, 1998; Walter, 2003). As a whole, the population of woody 
recruits in the Sudanian savanna is a mosaic of juveniles originating from seeds 
and sprouts. 
 
Disturbances and their impacts on regeneration 
Natural disturbance regimes are commonly touted as a good model for proper 
management of forest resources (Roberts, 2007). In Burkina Faso, for example, 
since 1986 the standard management regime of State forest in savanna woodlands 
has included the use of annual early fire, prohibition of grazing by livestock and 
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selective tree cutting by harvesting 50% of the of the merchantable standing 
volume on a 20–year rotation (Bellefontaine, Gaston & Petrucci, 2000). 
Understanding the impacts of these disturbance regimes on the regeneration of 
woody species is essential for developing management prescriptions that touted 
natural disturbances. Disturbance is defined as a change in the structure of a 
system usually affecting its functioning (Frost et al., 1986). Generally, after 
disturbances, some species may invade while others decline (Gibson & Brown, 
1991). Such functional adaptations underlie two mechanisms of ecosystem 
response to disturbance: stability and resilience. Ecosystem stability refers to a 
system that changes little in response to disturbance while a resilient system is one 
that can change quite markedly as a result of disturbance but has the capacity to 
return to its original equilibrium condition (Walker & Noy-Meir, 1982; Frost et 
al., 1986). Ecosystem resilience is an integral part of sustainable development, and 
understanding how disturbance affects ecosystem structure and function would 
facilitate making ecologically informed management decisions (Turner et al., 
2003). The most important anthropogenic disturbances that determine vegetation 
patterns in the Sudanian savanna are fire, grazing, browsing and tree cutting 
(Scholes & Walker, 1993; Breman & Kessler, 1995; Menaut, Lepage & Abbadie, 
1995). 
 

Between 25 and 50% of the Sudanian savanna burns annually (Delmas et al., 
1991); the entire zone burns every 2-3 years primarily because of human activities 
(Menaut & Solbrig, 1991). The effect of fire on the regeneration of woody species 
can be either positive or negative depending on the intensity of burning (Keeley & 
Fotheringham, 2000). Fires occurring earlier in the dry season tend to be of low 
intensity since the predominantly herbaceous fuel still holds moisture from the wet 
season (Liedloff et al., 2001). Such fires, could therefore, enhance colonization 
processes by inducing a flush of germination. Heat shock during burning acts 
directly on the seed coat and/or the embryo of many species, thus stimulating seed 
germination (Teketay, 1996; Baskin & Baskin, 1998; Danthu et al., 2003; Schelin 
et al., 2003; 2004). Fire also generates smoke, which contains chemical 
compounds such as ethylene, ammonia, nitrogen oxide and ash that may trigger 
seed germination, as demonstrated in many studies on smoke-induced germination 
(De Lange & Boucher, 1990; Brown & van Staden, 1997; Keeley & 
Fotheringham, 1998; van Staden et al., 2000; Brown & Botha, 2004; 
Razanamandranto et al., 2005; Tigabu et al., 2007). Burning may also trigger stem 
sprouting and root suckering in most savanna trees (Hoffmann, 1998) and may 
favour the development of multi-stemmed individuals of some species (Jacobs & 
Biggs, 2001). 
 

Small seedlings do not generally tolerate fire and are killed (Kitajima & Fenner, 
2000). High-intensity of fire may also create pH and osmotic conditions that are 
unfavourable for the germination of some species (Keeley & Fotheringham, 
2000). Postfire gaps may be drought-prone, since the increased exposure may lead 
to elevated evaporation and thus reduced moisture availability at shallow soil 
depths where germination occurs; hence such gaps may contribute to higher rate 
of extinction. Intense fire may destroy unburied seeds (Razanamandranto 2003) 
since nearly all fires in West African savanna are surface fires (Menaut et al., 
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1991), with the highest temperature being close to the soil surface and up to 20 cm 
above ground (Monnier, 1990; Nikiema, 2005). Fire prolongs the transition period 
from seedling to sapling as a result of killing the top part of the plants (Hoffmann 
& Solbrig, 2003). Recurrent fires could also cause a shift in species composition, 
favouring species capable of vegetative reproduction (Louppe, Ouattara & 
Coulibaly, 1995; Frost et al., 1996; Hoffmann, 1998). Savanna tree species have 
evolved adaptive strategies to withstand the effects of fire; these include 
cryptogeal germination (Jackson, 1974), bark thickness, and wood basic density 
(Abbot & Lowore, 1999; Nygård & Elfving, 2000; Eriksson, Teketay & 
Granström, 2003). 
 

Savannas constitute a habitat and/or food source for many herbivores including 
wildlife and livestock. Livestock is of economic importance in large parts of 
dryland Africa. For example in Burkina Faso, 85% of all households depend on 
livestock for some of their income (Gning, 2005). Despite attempts made by local 
authorities to prohibit livestock grazing from State forests, natural vegetation is the 
main food source for these animals. Herbivory therefore, constitutes another 
important disturbance agent with a potential effect on regeneration dynamics in 
the savanna. Herbivores enhance the colonization process by long distance 
dispersal of seeds (Miller, 1995; Jordano, 2000; Stiles, 2000), enhancement of 
seed germination through gut action (Traveset, 1998; Traveset & Verdu, 2002; 
Razanamandranto et al., 2004) and regulation of tree-grass competition (Scholes 
& Archer, 1997). Woody plants and grasses interact through competition for light, 
water and nutrients or facilitation mechanisms (Scholes & Archer, 1997). Grasses 
may regulate woody plant recruitment directly through competition or indirectly 
through their effect on fuel load and thus fire intensity. Trees affect herbaceous 
production and biomass allocation as well as species composition (Scholes & 
Walker, 1993; Scholes & Archer, 1997). Herbivores can also hinder the 
regeneration process through seed and seedling consumption (Bationo, Ouedraogo 
& Boussim, 2000; Bullock, 2000; Bationo et al., 2001; Drexhage & Colin, 2003; 
Fenner & Thompson, 2005). Depending on the stocking rate, livestock grazing can 
limit seedling recruitment by exacerbating drought as a result of soil compaction 
that, in turn, can reduce soil infiltration (Kozlowski, 1999; Savadogo, Sawadogo 
& Tiveau, 2007). Livestock can also impede seedling and sapling growth through 
over-browsing. 
 

In most African countries, the woodlands provide both urban and rural 
populations not only with non-timber resources (fruit, medicines, fodder) but also 
with the greatest proportion of their fuel (Soto Flandez, 1995; Abbot & Lowore, 
1999; Nygård, Sawadogo & Elfving, 2004). For example in Burkina Faso, wood 
account for 91% of energy consumption and selective tree cutting has been 
adopted as management tool for woodfuel production (Sawadogo, 2006). Selective 
tree cutting opens gaps in vegetation communities, reducing competition for 
resources such as light, nutrients and water, and inducing changes in soil 
temperature (Bullock, 2000). Depending on the level of reduction in competition 
and other factors influencing regeneration, the gaps created could be colonized by 
seedlings from soil seed banks, seed rains or seedling banks. Generally, the change 
in light intensity and quality (red: far-red ratio) as well as the level and 
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fluctuations in temperature induce seed germination in many tree species (Teketay 
& Granström, 1997; Bullock, 2000; Yirdaw & Leinonen, 2002; Yirdaw & 
Luukkanen, 2004). It has been reported that emergence and survival of emerged 
seedlings increase with the number of canopy gaps (Bullock, Clear Hill & 
Silvertown, 1994; Bullock, 2000; Hutchinson, Sutherland & Yaussy, 2005) and 
gap size (Vandenberghe et al., 2006) when light is the main limiting factor. 
However, in moisture-limited, open environments such as the Sudanian savanna, 
the beneficial effect on seedling establishment of gaps created by selective 
removal of trees could be reduced as a result of depletion of water resources. 
Moreover, in this savanna ecosystem the changes in resource availability and 
environmental conditions following selective tree cutting will affect not only 
woody species but also the herbaceous layer. Indeed, many trials carried out in 
southern African savannas and elsewhere have shown an immediate increase in 
grass production following removal of woody plants (Scholes & Walker, 1993; 
Gambiza et al., 2000). This leads to more severe competition with ligneous 
regeneration. Colonization of post-cutting gaps can also result from asexual 
reproduction by, for example coppices and root suckers, since most savanna tree 
species are capable of regenerating vegetatively (Frost et al., 1996; Bellefontaine, 
1997; Bellefontaine et al., 2000; Sawadogo, Nygård & Pallo, 2002). 
 

Disturbance is common in plant communities and interactions may occur 
between disturbance types (Fenner & Thompson, 2005). For example, herbivores 
reduce grass biomass and hence the fuel load available for fires. The resulting low 
intensity fire can favour seedling and sapling recruitment (Scholes & Walker, 
1993). The available evidence indicates that a strong grazer-browser-fire 
interaction exists; this in turn influences tree-grass mixtures (Scholes & Archer, 
1997). In contrast, the increase in grass production following selective tree 
removal in savannas (Scholes & Walker, 1993; Gambiza et al., 2000) may lead to 
more intense fires, adversely affecting seedling and sapling recruitment. Moreover 
abiotic factors such as soil characteristics and rainfall alone or in combination with 
these disturbances can also play key roles in the regeneration process (Frost et al., 
1986). These complex independent and/or interactive effects of disturbances on 
the regeneration of woody plants are highly variable and are not yet fully 
understood, despite continued research efforts. Therefore, understanding the 
impacts of fire, grazing, selective cutting of trees and their interactions is still 
needed in order to support sustainable management of savanna resources. 
 
Background to Forest Management in Burkina Faso 
Management of forests and woodlands in West Africa has been influenced by the 
political and climatic histories of the region. In the 1930s a large part of the North 
Sudanian zone of West Africa was delimited and protected by the colonial 
administration as wildlife sanctuaries and to prevent the expansion of shifting 
cultivation (Shepard, 1992). After the Independence forests and woodlands have 
been preserved through the establishment of State forests for wood production and 
biodiversity conservation. In Burkina Faso, State forest reserves represent 25% of 
the total area of forests and woodlands, which covers 7.1 million ha or 26% of the 
country’s land area (Kaboré, 2004). These State forests have continuously been 



 12 

used as sources of urban woodfuel and sometimes illegally as rangelands. After 
the severe drought years in the Sahelian region in the 1970s, large scale plantation 
projects using exotic species such as Eucalyptus camaldulensis Denh., Gmelina 
arborea Roxb., and Tectona grandis L. f. were initiated to meet the urban 
woodfuel needs and to control desertification; unfortunately these turned out to be 
costly (Jensen, 1997; Bellefontaine, Gaston & Petrucci, 2000; Nygård, 2000). 
From the 1980s, natural forest management emerged as a subject of interest in 
Burkina Faso, and participatory forest management (with wide responsibility and 
ownership assigned to the local population) has been implemented (Kaboré, 
2004). Forest management action plans (programs, policies and acts) covering the 
technical, political or legal aspects of natural forest management, including 
regulation of disturbance factors such as fire, tree cutting and livestock grazing, 
have been drafted and implemented since the 1990s (Kaboré, 2004). Among other 
approaches, the application of annual early fire was formally adopted to minimize 
the risk of intense late fire and to improve pasture production for wildlife 
(Sawadogo, 1996; Sawadogo, 1998; Bellefontaine, Gaston & Petrucci, 2000). 
Selective tree cutting has been employed since 1986, harvesting 50% of the 
merchantable standing volume on a 20–year rotation (Bellefontaine, Gaston & 
Petrucci, 2000; Kaboré, 2004). Harvested plots are kept free from fire and grazing 
by livestock for 3 to 5 years and direct seeding with selected indigenous species is 
also undertaken with the intention of supplementing regeneration. Various issues 
have emerged as a result of these management practices. The lack of accurate 
volume functions has led to difficulties in assessing and controlling the stand 
volume (Kaboré, 2004). Furthermore, early fire following 3 years protection from 
grazing has shown a detrimental effect on ligneous regeneration at the 
experimental sites in Laba State forest (Manauté, 1996). This is due to the 
accumulation of grass biomass that favours intense fires. Direct seeding has 
produced unsatisfactory results, with low survival rates: 6% and 2% after 1 and 2 
years, respectively, despite good germination rates of up to 80% (Kaboré, 2004; 
Sawadogo, 2006). 
 

Although studies have been conducted on coppice growth (Renes, 1991; 
Nouvellet, 1993; Sawadogo, Nygård & Pallo, 2002; Nygård, Sawadogo & 
Elfving, 2004) and regeneration of a few selected species (Bationo, 2002), the 
long term effects of early fire, selective cutting and livestock grazing, on the 
dynamics of natural regeneration are not well known (Sawadogo, 2006). Thus, 
empirical evidence is still highly needed for an informed discussion on current 
woodland management strategies and to highlight possible improvements. 
 
Objectives 
The general objective of this thesis was to gain knowledge that would support 
sustainable management of savanna-woodlands in Burkina Faso. The thesis 
presents data on the impacts of different management regimes (fire, grazing, 
selective tree cutting and their interactions) on ligneous regeneration and the need 
for assisting the natural regeneration process. The specific objectives were to: 
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1. Examine the dynamics of sapling populations in response to annual early fire, 
grazing and selective tree cutting by analyzing changes in species richness and 
sapling population density over a ten year period (Study-I); 
2. Examine the effects of fire, grazing and selective cutting on seedling 
recruitment in the mid- and long-term by analyzing changes in seedling population 
density and species richness five and ten years after post treatment (Study-II); 
3. Identify the seed germination requirements of selected savanna woodland 
species (Study-III); and 
4. Identify seedling morphological attributes that ensure better field performance 
of two Sudanian woodland species (Study-IV). 
 
 

Materials and Methods 

Study areas 
Study I was carried out at Tiogo (12o13' N, 2o42' W) and Laba (11o40' N, 2o50' W) 
State forests (forêts classées) while study II was conducted at Laba. Both 
experimental sites are in Burkina Faso, West Africa (Fig. 1) and located on flat 
areas at an altitude of 300 m a.s.l. Phyto-geographically the study sites are situated 
in the Sudanian regional centre of endemism (White, 1983) in the transition from 
the north to south Sudanian Zone (Fig. 1) (Fontes & Guinko, 1995). Laba and 
Tiogo State forests cover 17 000 and 30 000 ha, respectively.  
 

 
 

Fig. 1. Vegetation map of Burkina Faso with isohyets and location of the two study sites 
(Readapted April 2007 by CTIG/INERA, Burkina Faso after Fontes & Guinko 1995 and 
Direction of the National Meteorology). 
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 The vegetation at both sites is a tree and bush savanna with a grass layer 
dominated by the annual grasses Andropogon pseudapricus Stapf. and Loudetia 
togoensis (Pilger) C.E. Hubbard and the perennial grasses Andropogon gayanus 
Kunth. (dominant in Tiogo) and Andropogon ascinodis C.B.Cl. (dominant in 
Laba). The main forb species are Cochlospermum planchoni Hook. F., Borreria 
stachydea (DC) Hutch. et Dalz., Borreria radiata DC. and Wissadula amplissima 
Fries. The woody vegetation at both sites is dominated by Mimosaceae and 
Combretaceae. The main species in terms of basal area are Detarium microcarpum 
Guill. et Perr., Combretum nigricans Lepr. ex Guill. et Perr., Acacia macrostachya 
Reichenb. ex DC., Entada africana Guill. et Perr., Lannea acida A. Rich., 
Anogeissus leiocarpus (D.C.) Guill. et Perr. and Vitellaria paradoxa Gaertn. f. 
Prior to the start of the experiment, trees at Laba had a mean basal area at stump 
level (20 cm above ground) and at breast height (130 cm above ground) of 10.7 
and 6.3 m2 ha−1, respectively, and a stand density of 582 individuals ha−1. 
Corresponding values at Tiogo were 10.9 m2 ha−1 and 6.1 m2 ha−1 at stump level 
and breast height, respectively, with a stand density of 542 individuals ha−1 
(Sawadogo, Nygård & Pallo, 2002). 
 

The unimodal rainy season generally lasts about six months from May to 
October. The mean (± SD) annual rainfall for the period 1993 – 2001 was 910 ± 
138 mm at Laba and 836 ± 219 mm at Tiogo. The number of rainy days per 
annum during the study period was 76 ± 13 and 70 ± 9 at Laba and Tiogo, 
respectively. There was large inter-annual variability in rainfall and number of 
rainy days per annum (Fig. 2). Mean daily minimum and maximum temperatures 
are 16 and 32°C in January (the coldest month) and 26 and 40°C in April (the 
hottest month) with an aridity index (Brown & Lugo, 1982) of 3.2 and 3.5 for 
Laba and Tiogo, respectively. According to the FAO’s classification system 
(Dreissen, Deckers & Spaargaren, 2001), Lixisols are the most common soil type 
at both study sites; these soils occur over large tracts of the Sudanian zone in 
Burkina Faso (Pallo, 1998). Generally, the soils are shallow (<45 cm depth) silty-
sand at Laba and mainly deep (>75 cm) silty-clay at Tiogo; some of their physical 
and chemical properties are :17.5% and 24.8% clay, 12.6% and 20.2% silt, 28.4% 
and 17.4% sand, 2.1% and 1.8% total organic matter, 0.1% and 0.1% total 
nitrogen, 1.3ppm and 1.4ppm available phosphorus for Laba and Tiogo, 
respectively (Sawadogo, Tiveau & Nygård, 2005). 
 
Methods 
 
Studies I and II 
A split-plot experiment was established to examine the effects of fire (no fire / 
annual early fire), grazing (no grazing / grazing), cutting (no cutting / selective 
tree cutting) and their interactions on sapling (study I) and seedling (study II) 
populations. At Laba and Tiogo, each experimental site was split into two main 
plots, one of which was fenced at the beginning of the dry season in December 
1992 to exclude grazing by livestock. Each main plot was further divided into 4 
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blocks of 2.25 ha, each containing four subplots of 0.25 ha (50 x 50 m), separated 
from each other by 20 – 30 m fire-breaks. The following treatments were 
randomly assigned to the four subplots within each block of the main plot, no 
cutting – no fire, no cutting – early fire, cutting – no fire, and cutting – early fire 
(Fig. 3). 
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Fig. 2. Rainfall and number of rainy days for the study period (1993-2001) at Laba and 
Tiogo sites, Burkina Faso.  
 
The selective cutting was conducted in December 1993 at Tiogo and 1 month later 
in January 1994 at Laba; 50% of the basal area at stump level was removed. In the 
savanna woodlands where trees are often multi-stemmed and existing volume 
functions often not applicable (Clement, 1982; Breman & Kessler, 1995; Kaboré, 
2004; Nygård, Sawadogo & Elfving, 2004) it was easier to monitor removal of 
50% of the basal area than the 50% of the merchantable volume as recommended 
in the management plan. Prior to cutting, all species were categorized according to 
their local uses as protected species, timber, poles and woodfuel, and woodfuel 
and other uses. Individuals in categories other than “protected species” were cut 
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according to the following size criteria: > 30 cm diameter at stump level for timber 
species, > 14 cm diameter at stump level for poles and woodfuel species and > 8 
cm diameter at stump level for woodfuel and other uses (Sawadogo, Nygård & 
Pallo, 2002). The prescribed early fire was applied at the end of the rainy season 
(October – November) each year beginning in 1992 when the grass layer humidity 
was approximately 40%. At both sites the main plot open for grazing was 
predominantly frequented by livestock, but wild animals also grazed there. 
The livestock carrying capacity in Laba forest was 1.0 tropical livestock unit ha−1 
(T.L.U. ha−1) and in Tiogo it was 1.4 T.L.U. ha−1 (Sawadogo, 1996); the grazing 
pressure at both sites was about half of this capacity (Sawadogo, Tiveau & 
Nygård, 2005). The presence of livestock in both forests varied spatially and 
temporally, mainly occurring during the rainy season when grasses were green and 
surrounding areas under cultivation. 
 

At both experimental sites, the sapling inventories were carried out in 1992 
(before applying the treatments) then ten years later in 2002. The seedlings were 
assessed in 1992, 1997 and 2002 at Laba. The following parameters were recorded 
in each 50 x 50 m subplot: species name, number of stems per individual, stem 
height, girth at stump level (for stems ≥ 10 cm girth), girth at breast height (for 
stems ≥ 10 cm girth). Changes in species richness and population density were 
calculated for both sapling and seedling populations and assessed by analysis of 
variance. Height class distribution and growth attributes were also investigated. 
The seedling data were also investigated using Principal Component Analysis 
(PCA) in order to explore the responses at the individual species level. Species 
identification and nomenclature followed Hutchinson et al. (1954) and Arbonnier 
(2002). 
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Fig. 3. Layout of the experimental design. 
 
Study III 
This study was an investigation of the germination requirements of four 
leguminous species from the Sudanian savanna, namely Burkea africana Hook. f., 
Detarium microcarpum, Entada africana, and Pterocarpus erinaceus Poir. 
Information on the nature of dormancy in three of these species is scarce; 
Pterocarpus erinaceus seeds, however, are not dormant, so do not need pre-
treatments (CNSF, 1995). The optimal germination temperature, light requirement 
and responses to heat shock for these species are not well known. Seeds of the 
four species were purchased from the National Tree Seed Centre in Ouagadougou, 
Burkina Faso and the germination trial conducted at Umeå, in the seed laboratory 
of the Faculty of Forest Sciences of SLU (Sweden). Seeds of B. africana, D. 
microcarpum, E. africana and P. erinaceus were collected in 2002, 2001, 1997 
and 2002 from Sapouy, Ougarou, Koaré/Gourma and Nazinga in Burkina Faso, 
respectively. They were subjected to different scarification treatments (mechanical 
scarification, sulphuric acid and hot water). For the temperature experiment, seeds 
were placed in Petri dishes with filter paper and incubated on a thermo-gradient 
table set at 20, 25, 30, 35 and 40°C. Where appropriate, seeds were scarified to 
condition them for temperature response tests. The effect of light was investigated 
by sowing one set of scarified seeds (where necessary) in a dark room and the 
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other set under constant light, 20 µEm-2s-1 (fluorescent lamp F40 W/33 RS cool 
white light) at room temperature. In the dry heat experiment, seeds were exposed 
to heat shock in a preheated oven at a range of different temperatures (70, 80, 90 
and 100°C) and durations (20, 40 and 60 minutes). 
 

A total of 100 seeds, four replicates of 25 seeds each, were used in each 
treatment for B. africana, E. africana and P. erinaceus. For D. microcarpum, 80 
seeds (four replicates of 20 seeds each) were used in each treatment because of 
this species’ large seed size. The germination process was monitored every day 
and germination was recorded when seeds had produced a 2 mm radicle of normal 
appearance. Germination capacity and mean germination time were calculated for 
each treatment and analyzed using a two-way ANOVA to test for significant 
differences among dry heat treatments and species, and one-way ANOVA to test 
the main effects of scarification treatments and temperature regimes. The effect of 
light conditions on seed germination for each species was compared using a t-test. 
 
Study IV 
In this study, variations in initial seedling morphology and field performance of 
two economically valuable species, Acacia macrostachya and Pterocarpus 
erinaceus, were investigated. Seeds of A. macrostachya and P. erinaceus were 
purchased from the National Tree Seed Centre in Ouagadougou, Burkina Faso, 
and seedlings were raised in the nursery of the Institute of Environmental and 
Agricultural Research, Department of Forest Production in Ouagadougou from 
November 2003 to August 2004. Seedling production was designed in such a way 
that three seedling age groups (3-, 6- and 9- months old) were obtained by the time 
of outplanting. A 2 × 3 factorial experiment was designed to test the effects of 
watering regime (no watering / dry season watering) and nursery production 
period (3-, 6-, 9- months old seedlings) on survival, growth and biomass 
production of the seedlings. Seedlings were planted out at Saria Agricultural 
Research Station (12º 16´N – 2º 09´W; 300 m a.s.l.) in the Sudanian zone of 
Burkina Faso in August 2004 (during the rainy season). The planting site was 
divided into two blocks separated by 58 m, and each block was further divided 
into 6 plots of 18 × 8 m, these were separated from each other by 4 m (Fig. 4).  
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Fig. 4. Layout of the design for the planting experiment at Saria research station, Burkina 
Faso. ACMA = Acacia macrostachya; PTER = Pterocarpus erinaceus. 
 
In each plot, 50 seedlings from one age group per species were planted. In one of 
the blocks, each planted seedling was watered with 5 litres of water twice a week 
during the dry season (October to May) while the other block was not watered. 
The planting site has a unimodal rainy season lasting for 6 months, from May to 
October. The experimental site was fenced to exclude large herbivores. 
 

To quantify the variation in morphological characteristics of seedlings of 
different age, a sample of 30 seedlings per species and nursery age group was 
randomly selected prior to planting and measured for seedling height, root collar 
diameter and shoot and root dry mass. One month after planting out, the root collar 
diameter and total height of all seedlings in each treatment group were recorded; a 
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second assessment was made 18 months after planting out. Relative growth rate 
(RGR) for root collar diameter and height were estimated based on 30 randomly 
selected individuals in each age group and species. In order to quantifying shoot 
and root dry masses after 18 months, five individuals of A. macrostachya from 
each watering regime and age group were randomly selected and harvested. For P. 
erinaceus, six individuals from each age group and watering regime were sampled 
to account for the observed variation in size within each age group. The shoot and 
root parts were separated and oven dried at 105ºC for 24 hours to determine the 
dry mass. 
 

To examine the extent to which seedling death was caused by drought, the 
relative importance of drought as a cause of seedling mortality (I) and a drought 
performance parameter (Dp) were calculated following Engelbrecht, Thomas & 
Melvin (2005): 
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Where MW = mortality in the watered plot, MD = mortality in the non-watered 
plot, ME = extra mortality in the non-watered plot (MD - MW), SW and SD are the 
survival over 18 months in watered and non-watered plots, respectively. Since the 
calculation of I is based on two assumptions: (1) drought was not a cause of 
mortality in the watered plot, and (2) non-drought factors act equally on both 
treatments, it provides information on direct drought effects but may include 
mortality due to interactions between drought and other factors. To further assess 
whether initial seedling age had an effect on drought tolerance, the “proportional 
growth” for each age group was calculated as the ratio between the mean total 
biomass of seedlings in the drought stress treatment and that of the well-watered 
group. This followed Munns (2002), who proposed that stress tolerance should be 
assessed as the proportion of biomass production under stressed conditions in 
relation to that produced under control conditions. A two-Way ANOVA was 
performed to determine whether root collar diameter, height and biomass 
production were significantly affected by watering regime and initial seedling age. 
Each individual seedling was treated as a replicate during statistical analyses of the 
data and a stringent level of significance (0.01) and log- or square root-
transformations were employed for data sets that violated the requirement for 
homoscedasticity and normality (Zar, 1996). Both simple and multiple linear 
regression analyses were performed to establish the relationship between initial 
shoot height, root collar diameter and or both at the time of planting and after 18 
months of growth in the field. 
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Results and Discussion 

Dynamics of sapling populations 
The effects of fire, grazing and selective tree cutting on population dynamics of 
saplings in the Sudanian savanna woodlands are independent, as evidenced by the 
lack of significant interaction effects. Annual early fire had the strongest influence 
on the dynamics of the sapling population: it significantly reduced species 
richness, density of saplings and CAI in basal area at both study sites (Fig. 5). 
Recurrent burning probably limits species composition by favouring fire tolerant 
species and/or species adapted to resprouting after fire, since both fire tolerant and 
intolerant species grew well on unburnt plots. For example, we observed that 
Anogeissus leiocarpus was highly invasive in fire exclusion plots. The effect of 
fire on species richness is consistent with previous studies (Gignoux, Clobert & 
Menaut, 1997; Hoffmann, 1998; Hutchinson, Sutherland & Yaussy, 2005). The 
negative effect of fire on woody plant density has been reported previously by 
many authors (Gambiza et al., 2005; Hutchinson, Sutherland & Yaussy, 2005; 
Albrecht & McCarthy, 2006). Nevertheless, in this study, the prescribed annual 
fire did not totally suppress recruitment of saplings, only slowed the rate of 
recruitment. This is consistent with previous studies in African savannas 
(Hochberg, Menaut & Gignoux, 1994; Menaut, Lepage & Abbadie, 1995). The 
delay in the rate of sapling recruitment could be responsible for the low basal area 
increment on burned subplots at both study sites, although basal area growth is 
related not only to number of individuals in the stand (density) but also to tree age, 
even in unburnt plots (West, 2004). A similar result was found in the miombo 
woodlands where basal area of woody plants was significantly reduced by 
frequent fires (Gambiza et al., 2000). 
 

Annual prescribed early fire favoured growth of multi-stemmed woody plants 
rather than the single-stemmed sapling population, as evidenced by the negative 
rate of change of the later, particularly at Laba (Fig. 5). This could be because fire 
destroys the aboveground biomass, inducing sprouting of newly formed and/or 
dormant buds that are present on the remaining stems and roots (Menaut, Lepage 
& Abbadie, 1995; Hoffmann & Solbrig, 2003; Kennedy & Potgieter, 2003) 
leading to a multi-stemmed morphology. Top-kill is also probably responsible for 
the observed effects on height class distribution and reduced annual increment in 
dominant height. 
 

Grazing by livestock did not affect species richness, rate of change in population 
density or growth of saplings. Since the grazing intensity on the experimental plots 
was half of the carrying capacity, many species were able to survive this moderate 
level of grazing, allowing succession to proceed, but limiting the ability of highly 
competitive species to dominate the community. Belsky & Blumenthal (1997) 
provided evidence showing that low to moderate levels of herbivory sometimes 
have no measurable effect on species richness. Browsing can also turn a single 
stemmed individual into a multi-stemmed individual during the early stages of 
growth by removing the apical buds, as evidenced by the increasing tendency of 
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the number of multi-stemmed individuals on grazed compared with ungrazed 
plots. 
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Fig. 5. Fire main effect on annualized rate of change in sapling population density (r), 
proportional increase in species richness (R) and current annual increment in basal area 
(CAIba). TD stands for Total population density, MS for multi-stemmed subpopulation 
density and SS for single-stemmed subpopulation density. Bars with same letters show non-
significant difference in mean values.  
 

Although selective removal of trees is expected to enhance the recruitment 
process by reducing competition for water and nutrients, opening up more 
growing spaces and increasing light quality and intensity in the understory (Frost 
et al., 1986; Hutchinson, Sutherland & Yaussy, 2005), it did not affect sapling 
recruitment in these experiments on the Sudanian savanna woodlands. This may 
be related to the initial stock of trees. If tree density is high prior to cutting, 
selective cutting of trees reduces competition for resources and thus has a clear 
effect. However, savanna woodlands are not dense, so further opening of the 
canopy may create unfavourable thermal conditions in the understory, increasing 
soil evaporation and plant evapotranspiration, thus counterbalancing the expected 
positive effects of increased water and nutrient availability. 
 

A number of factors influence the treatment effects; these include spatio-
temporal heterogeneity in vegetation and rainfall, the presence of bush clumps, 
and differential sensitivity of species to treatments. The mosaic of annual 
(Loudetia togoensis) and perennial (Andropogon gayanus) grasses affects the 
distribution and availability of dry grass at the time of burning. The amount and 
distribution of annual rainfall over the study period (Fig. 2) had a great effect on 
species composition and biomass of the herbaceous layer (Breman & Kessler, 
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1995; Sawadogo, Tiveau & Nygård, 2005). This, in turn, affected fuel load. Bush 
clumps occur on termite mounds that are very resistant to fire even when exposed 
to extreme burning, thus fire generally skirts around the edges leaving the centre 
unburnt. The rate of recruitment of saplings is therefore influenced by such 
patchiness of the vegetation. Species growing on termite mounds, for example, 
like Fertetia apodanthera Del., Tamarindus indica Linn., Combretum 
micranthum, Acacia erythrocalyx Brenan and Capparis sieperia Lam., are seldom 
reached by fire and therefore grow faster (pers. obs.). Species that are sensitive or 
tolerant to fire and grazing exist in this savanna woodland in varying proportions. 
For example, the density of Detarium microcarpum was substantially higher on 
plots protected from burning, particularly at Laba. This species coppices 
vigorously but coppice shoots protected from fire and livestock during two 
consecutive years failed to survive burning in the third year (Manauté, 1996), 
indicating their sensitivity to fire. Species, such as Crossopteryx febrifuga (Afzel. 
Ex G. Don) Benth. and Piliostigma thonningii (Schumach.) Milne-Redhead, have 
greater fire resistance owing to their investment in thicker bark and higher 
aboveground growth rates (Gignoux, Clobert & Menaut, 1997). 
 
Dynamics of seedling populations 
The overall species richness at the seedling stage is comparable to the whole stand 
species richness, but many species are represented by very few individuals (see 
appendix). The high proportion of tree species with few seedlings has already 
been reported as typical characteristics of many African savannas (Menaut, 
Lepage & Abbadie, 1995; Chidumayo & Frost, 1996; Luoga, Witkowski & 
Balkwill, 2004). Although the relative change in total seedling species richness 
was not significantly influenced by any of the treatments, the number of seedling 
species increased over the study period. This suggests that the management 
regimes played a minor role in the colonization process, which is governed by 
quality and quantity of dispersed seeds, soil seed banks, sprouts and suckers, and, 
the number of safe sites for establishment (Teketay & Granström, 1995; Teketay, 
1997a; 1997b; Murray & Garcia, 2002; Luoga, Witkowski & Balkwill, 2004). On 
the experimental site, the soil seed bank probably plays a minor role in the 
recruitment of seedlings due to an overall paucity of viable soil-stored seeds of 
woody species (Zida, unpublished data). With respect to seedling morphology, the 
number of species with multi-stemmed individuals was higher on plots under the 
fire × cutting regime compared to the control. This can be related to the ability of 
most savanna trees to coppice and produce root suckers following disturbances 
like cutting and fire (Olivier & Larson, 1996; Sawadogo, Nygård & Pallo, 2002; 
Nygård, Sawadogo & Elfving, 2004). The number of species with single stem was 
much lower on burnt than unburnt plots. Fire kills the aboveground parts of plants, 
so may stimulate bud formation and activate dormant buds that produce root 
suckers or sprouts (Menaut, Lepage & Abbadie, 1995; Hoffmann & Solbrig, 
2003). Recurrent or high intensity fires coupled with low seedling densities could 
increase the mortality rate of single-stemmed seedlings, since many seedling 
species were present at very low densities (see appendix). 
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Fire and grazing treatments substantially reduced the seedling density, 
particularly that of the single-stemmed sub-population. While herbivores kill 
seedlings by direct consumption or trampling (Braithwaite & Mayhead, 1996; 
Hester, Mitchell & Kirby, 1996; Drexhage & Colin, 2003), recurrent burning 
increases mortality by killing young succulent seedlings or exacerbating drought 
in post-burn environments (Gambiza et al., 2005; Hutchinson, Sutherland & 
Yaussy, 2005; Albrecht & McCarthy, 2006). High intensity fire also limits 
seedling recruitment as a result of its destructive effect on unburied seed, as shown 
by several studies dealing with the effects of fire on seed germination (Teketay, 
1996; Danthu et al., 2003; Schelin et al., 2003; 2004). Selective tree cutting 
tended to decrease seedling density, particularly that of single-stemmed 
individuals. This may be because cutting exacerbates drought by creating 
unfavourable thermal conditions in the understory (Frost et al., 1986; Hutchinson, 
Sutherland & Yaussy, 2005), and increases the competitive exclusion of single-
stemmed seedlings by suckers, sprouts and herbaceous species (Sawadogo, 
Nygård & Pallo, 2002; Nygård, Sawadogo & Elfving, 2004). In addition, cutting 
reduces the available seed source through decreased seed rain into the already 
impoverished soil seed bank. The effects of some treatments, such as fire on 
species richness interacted significantly with inventory time. This indicates inter-
annual variation in fire intensity and severity, which in turn depends on life form, 
quantity of fuels, weather conditions and moisture content of fuels (Frost et al., 
1986). Temporal variation in grazing intensity, stocking rate and feeding 
behaviour is common in the Sahel (Hiernaux, 1998), and creates spatial and 
temporal heterogeneity in the fuel load and fire intensity. 

 
The species level PCA ordination highlighted two important issues. First, the 

species that responded very well (i.e. having the largest change in total seedling 
density) to some treatments were lianas (woody vines). For example, Baissea 
multiflora A. DC. (code = BAMU) and C. sepiaria (code = CACO) were 
relatively more abundant in the fire × cutting plots while Opilia celtidifolia (Guill. 
Et Perr.) Endl. Es Walp. (code = OPCE) was relatively more abundant in grazing 
plots and grazing × fire plots (Fig. 6) than in the other plots. Species such as B. 
multiflora and A. erythrocalyx (code = ACPE) were even relatively more abundant 
in the control plot than the other plots. Lianas influence a number of essential 
forest processes, such as reducing tree growth and fecundity, increasing tree 
mortality and altering gap-phase regeneration (Schnitzer, Dalling & Carson, 2000; 
Schnitzer & Carson, 2001; Schnitzer, Kuzee & Bongers, 2005), thus their 
population size should be maintained at a level that does not adversely affect wood 
production and biodiversity conservation. It should, however, be noted that lianas 
play significant ecological and socio-economic roles in tropical forest vegetation: 
they contribute to the carbon budget and have ethno-botanical values. Thus, they 
deserve to be conserved in their ecosystem (Schnitzer & Bongers, 2002; Senbeta 
et al., 2005).  
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Fig. 6. Score (top panel) and loading (lower panel) plots from PCA ordination of species 
and treatments and year for the first two principal components for the overall seedling 
population. For species code, see appendix. Treatments were coded as followed: control 
(Co), grazing (Gr), fire (Fi), cutting (Cu) and their combinations. 
 

The second important aspect is the relatively small change in total seedling 
density of socio-economically valuable species (e.g. Burkea africana, Combretum 
nigricans, Acacia macrostachya and Entada africana) irrespective of the 
management regimes applied. This accentuates the importance of supplementing 
the natural regeneration of these species through planting high quality seedlings as 
direct seeding has not been successful (Kaboré, 2004). 
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Seed germination requirements 
Seeds of the species tested in this study responded differently to the various 
scarification treatments. Both treated and untreated seeds of D. microcarpum and 
E. africana almost all germinated. Mechanical scarification and sulphuric acid 
treatments for 15 and 20 minutes resulted in higher germination of B. africana 
seeds (Fig. 7). Apparently, the hard seed coat acts as a physical barrier for the 
uptake of water, thus preventing germination of B. africana seeds. Mechanical 
scarification disrupts this barrier, allowing the uptake of water and oxygen by the 
seed and permits radicle emergence by weakening the seed coat. Sulphuric acid 
disintegrates the seed coat and the micropylar plug, thereby allowing increased 
imbibition and subsequent germination of seeds (Baskin and Baskin, 1998). 
Mechanical scarification and concentrated sulphuric acid have been widely used to 
improve germination of several species with hard seed-coat (Teketay, 1996; Sy, 
Grouzis & Danthu, 2001; Tigabu & Odén, 2001; Delachiave & De Pinho, 2003). 
The success of hot water treatment is not universal and species-specificity exists. 
For example, hot water treatments have been reported to enhance the germination 
of several legumes and species with a hard endocarp (Teketay, 1996; Tigabu & 
Odén, 2001; Schelin et al., 2003), as reflected by the positive responses observed 
in the present study on seeds of D. microcarpum  and E. africana. However, seeds 
sensitive to hot water treatments have also been reported (Teketay, 1996; Teketay 
& Tigabu, 1996; Tigabu & Odén, 2001). In this study, the seeds that did not 
germinate were all hard and intact, indicating that the hot water treatment was not 
sufficient to scarify the hard seed coat of B. africana. 
 

The effect of dry heat treatment varied between species. Seeds of D. 
microcarpum and E. africana germinated well at low intensity heat shock (70 and 
80°C). The stimulatory effect of dry heat treatment is often attributed to cracking 
of the seed coat or splitting of the palisade layer of the micropyle, thereby 
allowing imbibition, diffusion of oxygen and lowering mechanical resistance to 
the protrusion of the radicle (Baskin and Baskin, 1998). A number of studies have 
shown that dry heat treatments (60-100°C) break physical dormancy in the seeds 
of a range of species (Mucunguzi & Oryem Origa, 1996; Teketay, 1996; Schelin et 
al., 2003; 2004). The germination of B. africana and P. erinaceus seeds was 
erratic and unsatisfactory after heat shock treatment compared with the control. 
The post germination assessment revealed that nearly all ungerminated seeds of P. 
erinaceus were dead. This indicates that seeds of this species are extremely 
sensitive to heat shock, so that fire, through its effect on the soil seed bank, could 
limit the regeneration by seed of this species in its natural habitat. It has been 
shown that the effect of heat shock on seeds without physical dormancy is related 
to their ability to withstand fire (Danthu et al., 2003; Razanamandranto, 2003). 
This effect depends, however, on the intensity of fire, which can vary between 40 
and 140°C in the Sudanian savanna (Razanamandranto, 2003) where P. erinaceus 
grows naturally. Seeds of B. africana that remained ungerminated were still hard 
and intact, indicating that either high intensity heat shock or extended time of 
exposure to dry heat treatments is required to scarify the hard seed coat. Physical 
dormancy and the erratic nature of germination of B. africana seeds could explain 
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the species’ poor natural regeneration in the Sudanian savanna in Burkina Faso 
(See Study-II). 
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Fig. 7. Germination capacity of seeds of Sudanian woody species in response to 
scarification treatments (A), dry heat treatments (B) and different constant temperature 
regimes (C). Scarification treatments were as followed; mechanical scarification (mech), 
sulphuric acid (sa), hot water (hw), and control (cont). Dry heat treatments were; treatment 
no. 1, control; 2-4, dry heat at 70°C for 20, 40 and 60 min; 5-7, dry heat at 80°C for 20, 40 
and 60 min; 8-10 dry heat at 90°C for 20, 40 and 60 min; and 11-13, dry heat at 100°C for 
20, 40 and 60 min, respectively. Values are mean ± SE and bars with the same letter (s) are 
not significantly different using Tukey’s test (p = 0.05). 
 

Seeds of the species tested exhibited different responses when incubated at 
different constant temperature. The germination of B. africana seeds was high 
when incubated between 20 and 30°C while the optimal temperature for 
germination of D. microcarpum was 35°C. Seeds of P. erinaceus germinated well 
across the temperature range of 20-35°C and E. africana seeds also germinated 
rapidly and in a large number at all temperature. These results are consistent with 
previous studies on several legumes and other woody species (Teketay, 1996; 
Teketay & Tigabu, 1996; Tigabu & Odén, 2001). The high degree of thermo-
plasticity displayed by seeds of E. africana enables the species to germinate and 
establish readily in the Sudanian savanna ecosystem, which is characterized by 
high temperatures, 16-40°C, and relatively long dry periods, 5-7 months, with an 
aridity index of 3.7 (Sawadogo, Nygård & Pallo, 2002). Seeds of all four species 
germinated equally well in light and dark conditions, suggesting that germination 
of these species is not light-dependent (neutral-photoblastic). This result is 
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consistent with previous studies of other woody species from similar dry 
ecosystems (Teketay & Tigabu, 1996; Teketay, 1998). 
 
Assessment of Seedling quality 
For P. erinaceus, nearly all morphological attributes were significantly lower for 
younger seedlings than older ones. Only the root collar diameter of A. 
macrostachya seedlings exhibited significant differences in relation to nursery 
production period (Fig. 8).The actual mean values of the various morphological 
attributes differed slightly among age groups, which might be associated with 
depletion of nutrients over time as fertilizer was not applied during seedling 
production. In fact, the growth of containerized seedlings in the nursery is affected 
not only by the length of the production period but also by various nursery 
practices, such as the type of substrate, container size and type, watering and 
fertilization regime (Bayley & Kietzka, 1996; Wightman, Shear & Goldfrab, 2001; 
Aphalo & Rikala, 2003). Apparently, nursery farming practices other than 
production period should be manipulated in order to produce seedlings with a 
wide range of morphological attributes. This would allow seedling quality to be 
evaluated on the basis of the morphological characteristics of seedlings prior to 
planting. 

 
Survival of seedlings in the field was considerably high (more than 70%) for both 
species irrespective of initial age at nursery and dry season watering treatment. 
This could be related to the intact root system of container-grown seedlings, which 
resulted in lower resistance to water flow through the soil-plant-atmosphere 
continuum (Grossnickle, 2005). Since the degree of disturbance to the root system 
during lifting, transporting and planting is much lower for container-grown 
seedlings, these seedlings experience lower plant water stress after planting out 
and achieve better survival in the field than bare rooted seedlings. This finding is 
consistent with the results reported by Engelbrecht and Kursar (2003) where both 
dry season irrigation and seedling size at the onset of drought had no significant 
effect on survival of potted seedlings of 12 out of the 28 tropical woody species 
they investigated. The high survival rate of both small and large seedlings could 
also be explained by the favourable root to shoot dry mass ratio (> 1.0 g/g) at the 
time of planting, which was also maintained in the field. Despite the higher field 
survival, seedling mortality as high as 30% was recorded. Drought accounted for 
75% of the observed mortality in 3- and 9-month old seedlings of A. macrostachya 
while non-drought factors were the major cause of death in 6-month old seedlings. 
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Fig. 8. Seedling sizes of A. macrostachya (A) and P. erinaceus (B) differing in nursery age 
prior to outplanting (Mean ± SE). Bars with the same letter are not significantly different. 
 
In the case of P. erinaceus, non-drought stressors were the major causes of 
seedling mortality, particularly for 3- and 9-month old seedlings as evidenced by 
the higher mortality in watered than non-watered plots (Fig. 9). 
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Seedling mortality can occur as a direct result of drought stress or non-drought 
stressors, such as herbivores, pathogens or competition exacerbated by drought 
(Gerhardt, 1996; 1998; Engelbrecht, Thomas & Melvin, 2005). Mortality of 
watered seedlings of P. erinaceus was mainly the result of herbivory (pers. obs.). 
Indeed, during the dry season when most of the plants have shed their leaves, the 
watered P. erinaceus seedlings attracted herbivores such as rodents, ants, and 
grasshoppers, which eat the green leaves and shoots. This situation could be one 
of the factors responsible for the delay in transition of seedlings to sapling stage, 
resulting in limited sapling population density in the study area (see study - I). 
Defoliation by insects has been suggested as one of the causes of seedling 
mortality in dry Afromontane forest species (Teketay, 1997b), in two Neotropical 
secondary forest species (Gerhardt, 1998), and in Andira inermis (W. Wright) 
Kunth ex. DC seedlings in both wet and dry plots (Engelbrecht, Thomas & 
Melvin, 2005). The results suggest that the importance of drought as a causal 
agent of seedling mortality (particularly for P. erinaceus) has been overestimated. 
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Fig. 9. Survival of A. macrostachya (A) and P. erinaceus (B) seedlings in watered (black 
bar) and dry plots (striped bar) after 18 months of outplanting, and the relative importance 
of drought as causes of seedling mortality (I) and drought performance (Dp). 
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Young and old seedlings of P. erinaceus were morphologically distinct at the time 
of planting. In contrast, A. macrostachya seedlings differed significantly only with 
respect to collar diameter. However, younger and older seedlings of both species 
had favourable root to shoot dry mass ratios (> 1.0 g/g) at the time of planting, and 
continued to maintain the same pattern in the field regardless of their initial age. 
Patterns of biomass allocation between shoot and root systems are the result of 
species environmental conditions, age, season, soil type and abiotic pressure as 
well as growth form and phenology (Snyman, 2005). Plants are also capable of 
adjusting the relative sizes and distribution of organs (e.g. shoot canopies, root 
systems) in response to changes in the supply of resources (Paz, 2003); these 
eventually determine plant growth rate. In general, when the availability of soil 
nutrients and water increases, plants allocate relatively less to their root system – 
the so called “resource optimization hypothesis”. The high biomass allocation to 
roots, which is a common strategy for species in dry sites, could be driven by 
drought stress and/or low soil nutrient availability. This high allocation to roots 
regardless of seedling initial age resulted in reduced aboveground growth, which 
explains the lack of significant differences in height growth for both species in this 
study.  
 

It is interesting to note that allocation to roots differs between species 
investigated; i.e. the root to shoot dry mass ratio was much higher for P. erinaceus 
than A. macrostachya seedlings in both watered and non-watered plots. This might 
be an important component of adaptive strategies for recruitment of P. erinaceus 
following disturbances. Pterocarpus erinaceus has a lingo-tuber type of tap root, 
typical of species adapted to resprouting following shoot dieback. The available 
evidence indicates that savanna trees have higher root to shoot ratios and a high 
level of total non-structural carbohydrate (TNC) reserves in their roots (Dembele, 
2004; Hoffmann, Orthen & Franco, 2004). This results in greater resprouting 
ability following burning while rendering seedlings more tolerant to fire 
(Hoffmann, 2000). The relatively high root to shoot ratio of P. erinaceus seedlings 
compared with that of A. macrostachya could also be partly related to shoot 
damage induced by defoliators in the former species. 

 
Seedling shoot height and root collar diameter alone or in combination with 

other seedling attributes have been used to relate planting stock quality to future 
field success (Thompson & Schultz, 1995; Bayley & Kietzka, 1996; Dey & 
Parker, 1997; Jacobs, Salifu & Seifert, 2005). In this study, the usefulness of 
initial shoot height in predicting future growth performance in the field appeared 
to be marginal, accounting for 6.2% and 7.2% of the variation in field height and 
diameter, respectively. This could be, in part, because, the initial variation in shoot 
height of individual seedlings was very low. On the other hand, repeated seedling 
shoot dieback in response to high temperature stress might render height a poor 
indicator of field performance. Root collar diameter prior to planting, however, 
appeared to be a potential predictor of future diameter growth of P. erinaceus in 
the field, as evidenced from the relatively high coefficient of determination (25%). 
Similar results have been reported for red oak seedlings, where the best predictive 
model was based on initial root collar diameter and predicted as high as 23% to 
51% of the variation in second-year field diameter (Dey & Parker, 1997; Jacobs, 
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Salifu & Seifert, 2005). There is evidence of a strong and significant correlation 
between root collar diameter and many root characteristics (such as root volume, 
tap root dry mass, total root dry mass, and first order lateral roots) that influence 
seedling performance in the field (Dey & Parker, 1997; Jacobs, Salifu & Seifert, 
2005). The large unexplained variation in both single- and multiple-trait models 
might be attributed to several uncontrolled factors such as genetics, root to shoot 
ratio and/or amount of stored reserves. These were not incorporated into the 
model. 
 
 

Concluding remarks and practical implications 

Results of these studies provide little evidence of significant additive effects of 
fire, grazing and selective tree cutting on the regeneration of woody species in the 
Sudanian savanna. The two components of woody species regeneration (seedling 
and sapling populations) reacted differently to the management regimes. Fire was 
the most detrimental with respect to sapling recruitment and affected the seedling 
population mainly by reducing the density of single-stemmed individuals without 
significantly impacting on the overall seedling recruitment. It should be noted that 
early fire did not completely halt sapling recruitment but simply slowed down the 
rate. Therefore, provided that due care is taken with regard to the timing of 
burning, weather conditions and other possible factors that increase fire intensity, 
the use of early fire as a management tool in Sudanian savanna, is a good 
compromise between the utopian aim of total protection and the occurrence of 
more damaging late fires. Grazing had the same effects as fire on the seedling 
population but had no effect on the sapling population. Moderate level of livestock 
grazing did not hinder overall seedling recruitment, although it did reduce the 
density of the more vulnerable single-stemmed seedlings. Therefore prohibition of 
livestock grazing from State forests, which is intended to protect ligneous 
regeneration, may need to be reconsidered especially when a lack of resources 
makes it difficult for the State to enforce the policy. In addition, there is an 
increasing demand from local communities for livestock feed. Empowering the 
local population could help to control grazing intensity. Selective tree cutting did 
not significantly affect sapling or seedling recruitment. Cutting intensities other 
than 50% of the basal area may need to be evaluated to achieve the expected 
beneficial effects of selective cutting on regeneration. At the seedling stage, the 
population of lianas increased relatively more across the study period in both 
treated and control plots than the other socio-economically valuable species. The 
existing management strategies may need to incorporate cleaning operations to 
regulate the liana populations, thereby preventing them from hampering tree 
growth without sacrificing their diversity. 

 
The investigation on germination requirements concluded that Burkea africana 

seeds need mechanical scarification or acid treatment to effectively break their 
physical dormancy. Seeds of Detarium microcarpum and Entada africana do not 
need scarification, but scarified seeds germinate more rapidly. Seeds of P. 
erinaceus did not tolerate heat shock while those of D. microcarpum and E. 



 33

africana responded positively to low intensity heat shock. Seeds of all species 
investigated in this study germinated well at 25-35°C, and in both light and dark 
conditions. Seeds of E. africana showed exceptionally high germination 
performance over all temperature regimes tested. 

 
The results of the seedling quality assessment experiment suggest that nursery 

practices other than length of production period should be considered to produce 
seedlings with the required morphological and physiological attributes for 
enhanced field performance. Survival of outplanted seedlings was high 
irrespective of dry season watering and initial seedling size as a result of high root 
to shoot ratio. Drought tolerance was not related to initial size and the importance 
of non-drought stressors on seedling mortality was observed. Root collar diameter 
at the time of planting had a potential for being used as predictor of the field 
performance of P. erinaceus seedlings. This could be further improved by using a 
wide range of initial root collar diameters during the development of a predictive 
model. 
 

Appendix 

A complete list of species in the seedling population together with their growth 
form and density (average number of individuals per ha) in 1992, 1997 and 2002 
at Laba. Species were grouped per local use following Nouvellet et al. (1995) and 
Sawadogo et al. (2002). Growth form (GF) description was translated from 
Guinko (1984): lTr = large tree, mTr = medium-sized tree, sTr = small tree, Bu = 
bush, Sh = shrub, sSh = sub-shrub, Li = liana.  
 
                                        

Code    GF   1992 1997   2002 
                                        
Protected species 
Afzelia africana Smith ex Pers.         ALAF    mTr      1   4    1 
Albizia chevalieri Harms            ALCH    sTr    17   3    3 
Albizia malacophylla (A. Rich.) Walp.     ALBO*   mTr      2   9    7 
Balanites aegyptiaca (L.) Del.         BAAE    Bu    19  49  69 
Bombax costatum Pellegr. et Vuillet      BOCO    sTr    21  56  62 
Khaya senegalensis (Dersr.) A. Juss.      KHSE    lTr       -   -   58 
Lannea acida A. Rich.             LAAC    sTr      4    37   19 
Lannea microcarpa Engl. et K. Krause     LAMI    sTr      2   4     2 
Lannea velutina A. Rich.            LAVE    Bu      7    26   14 
Parkia biglobosa (Jacq.) Benth.        PABI     mTr      2   2     3 
Prosopis africana (Guill. et Perr.) Taub.     PRAF    sTr      4   5     3 
Pterocarpus erinaceus Poir.          PTER     sTr    42  124   80 
Saba senegalensis (A. DC.) Pichon       SASE     Li       3   2     3 
Sclerocarya birrea (A. Rich.) Hochst.     SCBI    sTr      4  11    7 
Sterculia setigera Del.            STSE    sTr      2   9       6 
Stereospermum kunthianum Cham.       STKU    sTr    29  35  34 
Tamarindus indica Linn.           TAIN     mTr     9   23  33 
Terminalia laxiflora Engl.           TELA    sTr    66  79   4 
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Appendix (continued) 

                                        
Code    GF   1992 1997   2002 

                                        
Vitellaria paradoxa Gaertn. f.          BUPA*   sTr    81  162    201 
Vitex doniana Sweet             VIDO    sTr      2   3    2 
 
Timber 
Burkea africana Hook. f.           BUAF    mTr    46  81  63 
Isoberlinia doka Craib et Stapf        ISDO    mTr      1     -        - 
Mitragyna inermis (Willd.) O. Kuntze      MIIN     sTr      -     -    6 
Terminalia avicennioides Guill. et Perr.     TEAV    Bu    15  85  151 
Terminalia macroptera Guill.et Perr.      TEMA   sTr      1    5  1 
Xeroderris stulhmannii (Taub.) Mendonça&E.P. Sousa   OSST    sTr      5  23    19 
 
Pole and fuelwood 
Acacia polyacantha Willd.           ACPO    sTr      -   -    - 
Anogeissus leiocarpus (DC.) Guill. et Perr.   ANLE    mTr    72  126   106 
Combretum nigricans Lepr. ex Guill. et Perr.  CONI    Bu    62    72   103 
Crossopteryx febrifuga (Afzel. Ex G. Don) Benth.   CRFE    sTr    75    103   113 
Detarium microcarpum Guill. et Perr.      DEMI    Bu       525   1428   857 
Diospyros mespiliformis Hochst. ex A. Rich.   DIME    sTr          3  7    6 
Pseudocedrela kotschyi (Schweinf.) Harms    PSKO    mTr       19  27   13 
Ziziphus mauritiana Lam.           ZIMA    Sh        -      -    1 
 
Fuelwood and others 
Acacia dudgeoni Craib. ex Hall.         ACDU    Bu    133  667   383 
Acacia erythrocalyx Brenan          ACPE*   Li    35  133       316 
Acacia macrostachya Reichenb.ex DC.     ACMA   Sh   89  201    124 
Acacia nilotica (L.) Willd. ex Del.        ACNI    Bu     1   -       - 
Acacia seyal Del.               ACSE     Bu     3   5    3 
Acacia sieberiana DC.            ACSIE    sTr    -   -    2 
Allophyllus africanus P. Beauv.         ALAF    Sh     -   12   20 
Annona senegalensis Pers.           ANSE    sSh   211  316   242 
Baissea multiflora A. DC.           BAMU   Li     -   2     33 
Boscia senegalensis (Pers.) Lam ex Poir.     BOSE    Sh    -   -       1 
Boswellia dalzielii Hutch.           BODA    sTr    -   1     - 
Bridelia ferruginea Benth.           BRFE    Bu    5   6     9 
Cadaba farinosa Forssk.            CAFA    sSh    2   8   12 
Capparis sepiaria L.             CACO*   Li     3    17   39 
Cassia sieberiana DC.             CASIE    Bu    3   6     5 
Senna singueana (Del.) Lock          CASIN   sSh    9   9     8 
Combretum fragrans F. Hoffm         COFR    Bu   225  380   276 
Combretum glutinosum Perr. ex DC.       COGL    Bu    1   2    2 
Combretum micranthum G. Don.       COMI    Sh    3   -     - 
Combretum molle R. Br. ex G. Don       COMO    Bu    39   41     32 
Dichrostachys cinerea (L.) Wight et Arn.     DICI    Sh    59 201   159 
Entada africana Guill. et Perr.         ENAF    Sh    6    14    11 
Feretia apodanthera Del.            FEAP    sSh    36   75   113 
Gardenia erubescens Stapf et Hutch.       GAER    sSh      -     8       -  
Gardenia sokotensis Hutch.           GASO    sSh    8      -       1 
Gardenia ternifolia Schum et Thonn.      GATE     sSh    159    184   133 
Grewia bicolor Juss.             GEBI     Bu     23      38     41 
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Appendix (continued) 

                                        
Code    GF   1992 1997   2002 

                                        
Grewia flavescens Juss.            GRFL     Sh      3     2     -  
Grewia lasiodiscus K. Schum.         GRLA    Sh    3     1       3 
Grewia venusta Fresen.            GRMO*    Sh       52   75      68 
Guiera senegalensis J. F. Gmel.        GUSE    Sh    2     1     1 
Ozoroa insignis Del.              HEIN*   Sh    3     2     1 
Holarrhena floribunda (G. Don) Dur et Schinz     HOFL    Bu    3     1     3 
Hymenocardia acidaTul.            HYAC    Bu    5   12         9 
Lonchocarpus laxiflorus Guill. et Perr.      LOLA    sTr    4   16     3 
Maerua angolensis DC.            MAAN    Sh    3     3     4 
Maytenus senegalensis (Lam.) Exell       MASE     Sh    4     7     6 
Opilia celtidifolia (Guill. et Perr.) Endl. ex Walp.   OPCE    Li     -   2   18 
Pericopsis laxiflora (Benth.) van Meeuwen    AFLA*    sTr     15   23   25 
Piliostigma reticulatum (DC.) Hochst.      PIRE     Sh    2     2     1 
Piliostigma thonningii (Schumach.) Milne-Redh.  PITH     Sh    66  111     98 
Pteleopsis suberosa Engl. et Diels        PTSU     Bu    126     276      278 
Securidaca longepedunculata Fres.       SELO     Bu    1      1    5 
Securinega virosa (Roxb. ex Willd.) Baill.    SEVI     Sh    17   60     59 
Strychnos innocua Del.            STIN     Sh     -      -    8 
Strychnos spinosa Lam.           STSP     Sh      238    391   342 
Trichilia emetica Vahl             TREM    sTr    -     5       1 
Ximenia americana L.             XIAM    sSh    2     1    1 
Ziziphus mucronata Willd.           ZIMU    Sh    1     5    2 
                                        

 * Code adopted from species synonym 
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French summary (Résumé en Français) 

Impact des mesures d’aménagement forestier sur la 
régénération ligneuse dans la savane soudanienne du Burkina 
Faso 
 
Le feu précoce annuel, la coupe sélective de bois et l’interdiction du pâturage sont 
actuellement les principales prescriptions utilisées dans l’aménagement des forêts classées 
dans la zone soudanienne du Burkina Faso. Cependant, ces prescriptions ne sont pas basées 
sur des données scientifiques. Le présent travail se veut alors une contribution à l’étude des 
effets à long terme de ces pratiques d’aménagement sur les jeunes arbres, les plantules et  la 
germination des semences de certains ligneux. Les critères de qualité des plantules 
produites en pépinière ont été de même évalués. Sur une période de 10 ans il a été examiné 
les effets de ces trois outils d’aménagement sur la régénération des ligneux notamment la 
richesse spécifique et  la densité de la population. La germination des graines de Burkea 
africana Kook, f., Detarium microcarpum Guill. et Perr., Entada africana Guill. et Perr. et 
Pterocarpus erinaceus Poir a été testée après les traitements suivants: température, 
éclairage, chaleur sèche et scarification. La qualité des plantules d’Acacia macrostachya 
Reichenb.ex DC. et Pterocarpus erinaceus Poir. a été évaluée en fonction du temps de 
production en pépinière ; leurs performances après plantation ont été évaluées sous des 
conditions d’arrosage et de stress hydrique.  
 

Le feu, le pâturage et la coupe sélective ont influencé de façon indépendante la 
dynamique de la population des plantules et des jeunes arbres. Le feu précoce a réduit le 
recrutement des jeunes arbres tandis que le pâturage modéré n’a pas eu d’effet significatif. 
Bien qu’aucun traitement n’ait influencé la densité de la population des plantules, le feu et 
le pâturage ont influencé fortement la densité des plantules monocaules. Une Analyse en 
Composante Principale (ACP) a montré que la réponse des plantules aux traitements 
dépend de l’espèce. Elle a révélé en particulier une augmentation de la population des 
lianes par rapport aux autres espèces. Les semences de D. microcarpum et E. africana n’ont 
pas montré de dormance alors qu’un trempage des graines de B. africana dans l’acide 
sulfurique pendant 15-20 mn a permis de lever leur dormance physique. Les graines de 
toutes les espèces étudiées ont été indifférentes à l’éclairage. Les températures optimales de 
germination étaient de 25-35 oC pour toutes les graines excepté celles d’E. africana qui ont 
bien germé à toutes les températures testées. Les semences de P. erinaceus n’ont pas 
supporté le  choc  thermique tandis que celles de D. microcarpum  et d’E.  africana  ont 
répondu positivement à ce traitement appliqué à basse intensité. La survie et la croissance 
des plantules d’A. macrostachya et de P. erinaceus évaluées après 18 mois de plantation 
n’ont pas été influencées par leur taille initiale. La survie des plantules a été influencée par 
des facteurs hydriques et non hydriques. La croissance des plantules de P.  erinaceus 
pourrait être prédite à partir du diamètre initial du collet ; néanmoins, une plus grande base 
de données serait nécessaire pour construire un modèle plus fiable. 
 
A partir des résultats obtenus, il est recommandé de continuer d’utiliser le feu précoce 
comme outil d’aménagement des forêts en tenant compte du temps de mise à feu, des 
conditions atmosphériques et d’autres facteurs qui influenceraient l’intensité du feu. Le 
pâturage modéré n’a pas influencé le recrutement des plantules et des jeunes arbres. Un 
pâturage modéré pourrait alors être autorisé dans les forêts classées afin de permettre un 
aménagement multi-usages des ressources forestières. La faible densité des plantules des 
espèces à grande valeur socio-économique pourrait  être améliorée par une plantation de 
plantules de grande qualité. 
 
Mots clés: germination, plantules, jeunes arbres, lianes, semis, qualité de plantules, savane 
arborée, forêt sèche, perturbation, Afrique de l’Ouest. 




