
The Occurrence of Amino Acids in 
Agricultural Soil and their Uptake by 

Plants  

Sandra Jämtgård 
Faculty of Natural Resources and Agricultural Sciences 

Department of Agricultural Research for Northern Sweden 
Umeå 

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Umeå 2010 



 

Acta Universitatis agriculturae Sueciae 

2010:27 

ISSN 1652-6880 
ISBN 978-91-576-7504-0 
© 2010 Sandra Jämtgård, Umeå 
Print: Arkitektkopia AB, Umeå 2010 

Cover: The art of root dipping 
(photo: Sandra Jämtgård) 



 

 

The Occurrence of Amino Acids in Agricultural Soil and their Uptake by Plants. 

Abstract 
The ability of plants to take up amino acids is widespread among plants, but the 
ecological and physiological implications of this ability are not fully understood. 
Therefore, in the investigations this thesis is based upon, key aspects of the uptake 
of amino acids by agricultural plants were explored in field studies (to ensure 
ecological relevance) and laboratory analyses (to ensure precision). Small tension 
lysimeters were used to collect soil solution from several agricultural soils with 
minimal disturbance. Concentrations of free amino acids were found to be low (0-
12.7 µM). However, they may be continuously replenished from bound amino acid 
pools and were found to be sufficiently high (generally) for uptake by 
hydroponically grown barley, Hordeum vulgare L., and Arabidopsis, Arabidopsis 
thaliana L. Hence, the effective minimum concentrations for uptake by these species 
do not seem to exceed most of the field-measured concentrations. The uptake 
affinity in both barley and Arabidopsis was found to be comparable to reported 
values for nitrate at corresponding concentrations and for uptake of amino acids by 
soil micro-organisms. The amino acid transporters lysine histidine transporter 1 
(LHT1) and amino acid permease 5 (AAP5) were found to be largely responsible 
for amino acid uptake in Arabidopsis at these concentrations. These transporters 
have complementary affinities for amino acids with differing properties; LHT1 
transporting acidic and neutral amino acids, and AAP5 basic amino acids. 
Furthermore, the gene expression of LHT1 and AAP5 clearly increased after roots 
were exposed to amino acids, even in the presence of inorganic nitrogen, resulting 
in up to 15-fold increases in the rate of amino acid uptake. The induced amino acid 
uptake rates were up to 10-fold higher than nitrate uptake rates in Arabidopsis. 

According to standard textbooks, nitrate and ammonium are the major nitrogen 
sources for plants. However, the results of these studies indicate that plants have the 
capacity to take up amino acids at field concentrations in presence of nitrate and 
ammonium. This capacity requires gene expression, synthesis and regulation of 
amino acid transporters, and the ability of plants to sense and respond to amino acid 
concentrations at ambient concentrations. There is, therefore, little doubt that plants 
can take up amino acids in their natural environment. Thus, it is time to reconsider 
traditional views of the nitrogen compounds used by agricultural plants.Keywords: 
Arabidopsis thaliana, barley, Bound amino acids, Free amino acids, Induction, 
Inorganic nitrogen, Lysimeter, Nitrogen, Amino acid transporter 
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1 Introduction 

1.1 Why nitrogen and why amino acids? 

This thesis focuses on the role of nitrogen generally, and amino acids 
specifically, in plant nutrition. This is important from both plant 
productivity and global warming perspectives, for the following reasons. 
Nitrogen is the fourth most abundant compound in plants. It is a 
component of proteins, nucleic acids, chlorophyll, diverse secondary 
compounds and many cellular structures. It also plays essential roles in all 
plant growth and development processes, including transport, cell division 
and catalysis of biochemical reactions. Plant availability of N is therefore 
tightly coupled to plant productivity in both natural and agricultural 
ecosystems. Indeed, high applications of N fertilizer together with the 
development of high-yielding crop varieties were major drivers of the 
enormous increase in crop production during the “green revolution” in the 
1950’s and 1960’s. Agricultural production today is heavily dependent on 
inputs of inorganic N (IN) fertilizer to maintain global primary production 
and food production, which also dramatically affect the N cycle and 
associated processes (Fig. 1) (Vitousek et al., 1997; Galloway et al., 2008). 
With increasing carbon (C) dioxide concentrations in the atmosphere 
knowledge about the connections between the C and N cycles is becoming 
increasingly important. Theoretically, global warming could be reduced by 
globally enhancing the primary production of photosynthesis, but that 
would require enormous N inputs (Gruber & Galloway, 2008). Therefore, 
there are profound reasons for improving our knowledge of plant nutrition, 
and if possible tailoring inputs to optimize desired outputs. An important 
aspect to consider in this context is the relative importance of different N 
sources for crop plants and other photosynthetic organisms. Roots have the 
ability to take up N in both organic and inorganic forms. In particular, the 
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ability to take up organic N (ON) in the form of amino acids is known to 
be widespread among plants (Näsholm et al., 2009). However, although this 
ability was first investigated at the beginning of the last century (e.g. 
Hutchinson & Miller, 1911), the quantitative importance of amino acids in 
the plant N budget is still uncertain. 
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Figure 1. World consumption of N-containing fertilizers between 1961-2007. Nitrogen-
containing fertilizers include ammonium nitrate, ammonium phosphate, ammonium 
sulphate, urea, calcium ammonium nitrate, ammonia direct application, and combinations 
including NP, NK and NPK. (Plotted data from International Fertiliser Industry Association, 
www.fertilizer.org). 

To investigate the importance of root uptake of amino acids in the plant 
N budget the influence of many factors needs to be evaluated. Firstly, amino 
acids have to be available in the root environment for uptake to be 
potentially possible. Concentrations of free amino acids (FAA) in soil 
solution are therefore important factors to determine. Ideally, the FAA 
production rates and diffusion rates should also be estimated, since the 
concentration of FAA available for plant uptake in the rhizosphere is 
dependent upon these processes (Leadley et al., 1997). In addition, for amino 
acids to be significant contributors to plant N nutrition, roots have to be 
capable of taking them up from solutions with field-relevant concentrations. 
Thus, root uptake capacity has to be quantified in terms of both uptake 
affinity and maximum potential uptake rates, to define circumstances in 
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which plant amino acid uptake may be important. Root uptake capacity is 
affected by diverse features of plants, notably the amounts, types and 
activities of amino acid transporters in cell membranes in contact with soil 
solutions. Thus, knowledge of the expression and regulation of these 
transporters is also needed. 

1.2 Nitrogen in soil 

Nitrogen is present in soils in a huge number of chemical forms, including 
complex forms such as proteins, and simple forms like inorganic ions such as 
ammonium and nitrate (Fig. 2). Soil N also occurs in both solid forms, 
absorbed to surfaces of soil mineral particles, and as solutes in the soil 
solution, but plant-available nutrients are usually present in the soil solution. 
Both ON and IN are present as solutes in the soil solution, and varying 
fractions of these N compounds’ pools are considered to be available for 
uptake by plants. Briefly, the thermodynamically “downhill” phase of the N 
cycle, in which N compounds are degraded, starts with the breakdown of 
organic matter and proceeds, via protein and peptide depolymerisation, 
through the liberation of amino acids and (if these substances are not taken 
up by roots or microbes) further degradation to ammonium, which is often 
subsequently nitrified to nitrate (Fig. 2). All of these compounds and/or 
intermediates are present in the soil. 
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Figure 2. Simplified view of chemical forms of N found in soil, relationships between them 
and their plant availability. IN is represented by ammonium and nitrate. Arrows pointing in 
opposite directions indicate uptake and efflux. 

1.2.1 Amino acids in soil 

Studies of plant uptake of ON have mostly focused on the uptake of amino 
acids, which have been shown to be present in soils around the world 
(Sowden et al., 1977; Kielland, 1994; Raab et al., 1999; Nordin et al., 2001; 
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Schmidt & Stewart, 1999). As shown in Figure 3, amino acids in soils 
and/or soil solution can be divided into three pools: (i) those dissolved in 
the soil solution, which are referred to as free amino acids (FAA) and are 
considered to be directly available to plants; (ii) exchangeable amino acids 
bound to charged surfaces on clay particles and soil organic matter; and (iii) 
bound amino acids (BAA) – the largest fraction of amino acids, mostly 
proteinaceous amino acids in proteins and peptides (Schulten & Schnitzen, 
1997). Most of the BAA fraction is only indirectly available to plants, and 
can be regarded as a reservoir from which FAA is replenished. 
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Figure 3. Processes affecting concentrations of free amino acids, FAA, in soil solution 

For FAA to serve as N sources for plants, they must be available in 
concentrations at which uptake is possible. Many studies of FAA 
concentrations in soil have been carried out in natural ecosystems, fewer 
have investigated their concentrations in agricultural soils (but see Jones et 
al., 2005). The relatively few studies of FAA concentrations in soil solution 
have found concentrations ranging from 0 to 158 µM (Raab et al., 1999; 
Jones et al., 2005). Ascertaining concentrations of FAA is not straightforward 
since they are affected by diverse factors, both abiotic and biotic. Abiotic 
factors like pH affect the charge of amino acids, and hence the rate of their 
movement in the soil solution through diffusion. Amino acids are grouped 
into acidic, basic and neutral amino acids according to the charge of the side 
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chain at pH 7. Basic amino acids, like arginine, are usually positively charged 
at the pH of most soil solutions (around neutral). The positive charge 
promotes adsorption to negatively charged surfaces of soil particles (clay) and 
soil organic matter (cf. Lipson & Näsholm, 2001), which in turn retards 
their diffusion in the soil solution and movement to the root surface. The 
size of an amino acid molecule also affects its diffusion rate, and the presence 
of Ca-carbonates or alkaline salts has been found to severely inhibit the 
movement of FAA (cf. Lipson & Näsholm, 2001). Soil amino acids can also 
bind to quinones and reducing sugars (Stevenson, 1994). All these factors 
affect the FAA concentration in the rhizosphere, and hence may reduce the 
effective concentration of FAA in the soil solution. Accordingly, the supply 
rate rather than root uptake kinetics has been found to be the most limiting 
parameter for the uptake of ammonium and glycine by arctic sedge 
(Eriophorum vaginatum L.) by Leadley et al. (1997). The supply rate (of any 
substance) to the root surface is a function of the diffusion rate and 
production rate. In the case of FAA, the production rate depends mainly on 
depolymerisation. 

FAA are produced through depolymerisation of proteins by extracellular 
enzymes. Plant litter is the main form of ON inputs in most soils (Figs. 1, 2) 
(Stevenson, 1982) and root turnover may contribute the greatest inputs of 
FAA and BAA (proteins and peptides) in soil (Jones et al., 2005a). Other 
sources include dead bacteria, fungal and animal tissues, excretions from 
microbes and animals, and effluxes or leakage from roots. Organic forms of 
N predominate in soil N, and approximately 40 % of total soil N is generally 
present in the form of proteins and peptides (Schulten & Schnitzer, 1997). 
Protein might therefore be the largest and most reliable source of FAA 
(Schulten & Schnitzer, 1997). Therefore, depolymerisation of protein N to 
amino acid N has been suggested to be the rate-limiting step in the overall 
N cycle of soils (Schimel & Bennett, 2004; Rennenberg, 2009). This 
hypothesis is supported by findings of increases in FAA concentrations along 
a successional gradient in forest soils (Werdin-Pfister et al., 2009) that 
appeared to be related to increases in the rate of depolymerisation rather 
than reductions in FAA degradation (Kielland et al., 2007). 

The degradation of FAA in soils devoid of plants has been found to be 
very rapid, with measured half-lives usually less than three hours and ranging 
from less than one to 20 hours (Jones, 1999; Lipson et al., 2001; Owen & 
Jones, 2001; Jones & Kielland, 2002; Jones et al., 2005). Furthermore, in 
quantitative assessments of plant FAA consumption, knowledge of their 
fluxes in addition to their concentrations may be required. As soon as FAA 
are released into the soil solution several processes cause their disappearance, 
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and thus reduce the concentration of FAA in the soil solution, including: (i) 
mineralization (ammonification, nitrification) to IN, (ii) binding in microbial 
biomass (immobilization), (iii) uptake by plants, (iv) losses by leaching, and 
(v) adsorption to charged surfaces (Fig 2) (Stevenson, 1982; Yu et al., 2002). 

1.3 Plant uptake of amino acids 

Traditionally, plant physiologists have regarded the main route of ON 
uptake by plants as involving ON capture by mycorrhizae, followed by 
transfer of some of the acquired N to associated plants (Read, 1991). 
Accordingly, various mycorrhizal plants have been found to be able to access 
peptides (Bajwa and Read, 1985; Abuzinadah & Read, 1989), proteins 
(Abuzinadah & Read, 1986; Finlay et al., 1992), and even chitin (Kerley & 
Read, 1995) as N sources. However, some of these compounds have also 
been recently shown to be taken up by non-mycorrhizal plants (Fig. 1) 
(Chalot & Brun, 1998; Komarova et al., 2008; Paungfoo-Lohienne et al., 
2008). 

As mentioned above, in most studies on ON uptake in plants amino acids 
have been used as test substances. The uptake of amino acids has been 
studied under various circumstances with various plant species. Furthermore, 
plant uptake of amino acids has been detected in both laboratory studies and 
the field, in ecosystems as diverse as arctic tundra (Kielland, 1994; Schimel & 
Chapin, 1996), boreal forests (Näsholm et al., 1998), alpine ecosystems 
(Raab et al., 1996, 1999) and both sub-Antarctic and tropical ecosystems 
(Schmidt & Stewart, 1999). Among agricultural plants both mycorrhizal 
grassland species (Näsholm et al., 2000; Weigelt et al., 2005) and non-
mycorrhizal winter wheat (Näsholm et al., 2001) have been shown to take 
up double-labelled glycine in the field, and several plant species, including 
N2-fixing legumes, have been shown to take up organic N in laboratory 
studies (Virtanen & Linkola, 1946; Soldal & Nissen, 1978; Schobert & 
Komor, 1987; Jones & Darrah, 1994; Reeve et al., 2008; Ge et al., 2009). 

1.3.1 Characteristics of amino acid uptake by intact roots 

Plant uptake of amino acids has been found to be concentration dependent. 
For amino acids to play a role in plant nutrition, uptake has to be possible at 
field concentrations. The minimum concentration (Cmin), uptake affinity (Km) 
and maximum uptake rate (Vmax) are important parameters for evaluating 
whether root uptake may occur at field concentrations, and if so its potential 
importance. Cmin is defined as the lowest concentration at which net uptake 
of a compound can occur, and the concept has been shown to be applicable 
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to phosphate uptake in plants (Lambers et al., 1998). Hence, determining 
Cmin is essential for ascertaining if amino acid uptake is possible under 
prevailing concentrations (if there is a Cmin, and it is higher than field 
concentrations, then plant uptake is likely to be non-existent). In addition, 
the uptake of amino acids has been found to be transporter-mediated (Bush, 
1993), hence knowledge of uptake kinetic parameters (Km and Vmax) may be 
valuable for assessing the functional status of the system, e.g. its level of 
expression/induction and potential fluxes through it. 

Despite the findings that FAA generally occur in low µM concentrations, 
considerably higher concentrations have been used in most uptake studies, 
both when characterising root uptake kinetics and when investigating plant 
uptake of amino acids under field conditions. In most laboratory studies 
amino acid concentrations in the range 100-8000 µM have been used 
(Wright, 1962; Raab et al., 1999; Schmidt & Stewart, 1999; Owen & Jones, 
2001). However, in a few studies uptake has been detected from solutions 
with ecologically relevant amino acid concentrations (0.1-10 µM), indicating 
that uptake might not be limited by a Cmin (Soldal & Nissen, 1978). Some of 
these studies (Soldal & Nissen, 1978; Jones & Darrah, 1994; Kielland, 1994) 
were performed on excised roots, which have been found to display 
different uptake kinetics compared to intact plants (Falkengren-Grerup et al., 
2000). 

Amino acid uptake rates have been investigated over a wide range of 
concentrations; from 0.1 µM to 10 mM. Therefore, published rates of plant 
amino acid uptake vary widely both within and between species, from 0.32 
to 100 µmol amino acid (g root DM)-1 h-1 (Schobert & Komor, 1987; 
Kielland, 1994; Raab et al., 1999; Falkengren-Grerup et al., 2000; Persson & 
Näsholm, 2001a; Persson & Näsholm, 2001b; Persson & Näsholm, 2002). 

Amino acid uptake rates by plants have been shown to increase with 
increases in the external amino acid concentration, and the concentration 
dependency of amino acid uptake in plants is often described by Michaelis-
Menten kinetic equations, which are commonly used to model enzyme 
kinetics, based on correlations between enzyme activity and substrate 
concentration. There are similarities between enzyme kinetics and 
membrane transporter kinetics, which have made Michaelis-Menten kinetics 
useful for characterizing root uptake of nutrients. In the latter context, they 
are used to define the affinity of the uptake system, expressed as Km, which is 
the concentration at which the uptake rate is half the maximum value (Vmax). 
Km is therefore a useful quantitative measure for comparing different plant 
species’ capacities to take up an amino acid, or root uptake and microbial 
uptake of the same substance at a given concentration. Km is also used to 
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assign transporters to an uptake affinity range. Further, Km can be used as a 
qualitative measure to compare uptake affinities for different compounds, e. 
g. amino acids and IN. Vmax is also a valuable measure since not only the 
affinity but also the potential uptake rate is informative (inter alia) for 
assessing competition and preferences. The approximation of Michaelis-
Menten kinetics to transporter activities is based on the assumption that 
there will be a concentration at which uptake is saturated. This is derived 
from the definition of Vmax, as the maximum velocity at which the modelled 
reaction possibly can occur, when the binding sites in all transporter proteins 
are occupied. 

A wide range of Km values have been determined for plant root uptake of 
amino acids, from 1.6 µM (barley) to 12 900 µM (Arabidopsis thaliana) 
(Soldal & Nissen, 1978; Schobert & Komor, 1987; Jones & Darrah, 1994; 
Kielland, 1994; Frommer et al., 1995; Chalot & Brun, 1998; Breitkreuz et 
al., 1999; Wallenda & Read, 1999). In comparison, reported Km values for 
mycorrhizal fungi and heterotrophic microbes range from 1.6 to 233 µM, 
and from 0.5 to 180 µM, respectively (Lipson & Näsholm, 2001). The 
correlation between amino acid uptake rate and external concentration may 
display a multiphasic relationship – e.g. in barley (Soldal & Nissen, 1978) – 
which can be plotted as a series of saturation kinetics curves for consecutive 
(or overlapping) concentration intervals, each with specific Km and Vmax 

values. This indicates that some of the large range in Km values may be due 
to differences in kinetic parameters of different components of the uptake 
system, i.e. the presence of two or more distinct transport systems with 
varying uptake affinities (see section 1.4.1 IN transporters in roots for further 
details). 

Despite the wide variation in affinity constants there is evidence that 
roots have high-affinity uptake systems for amino acids, capable of activity 
within ranges of FAA concentrations found in soil and with Km values 
comparable to those of microbial uptake systems (Lipson & Näsholm, 2001). 
This suggests that plants are potential competitors with soil microbes for 
FAA. However, in order to investigate the importance of amino acids in the 
N-nutrition of agricultural plants, Km values need to be determined within 
the range of ecologically relevant concentrations. 

1.4 Inorganic N and ON transporters in roots 

Traditionally, the IN forms nitrate and ammonium are considered to be the 
main N sources for plants. Hence, the importance of amino acids as N 
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sources for plants is often assessed by comparing their uptake with IN 
uptake. 

1.4.1 Inorganic N transporters in roots 

Nitrate transporters in roots can be divided into three classes. At low 
external concentrations (<0.50 mM) nitrate is taken up by high affinity 
transporter systems (HATS). The HATS can be further divided into 
constitutively expressed systems (cHATS), which are present prior to 
exposure of nitrate in situations where nitrate becomes available after a 
period in which none was accessible and nitrate induced systems (iHATS) 
which are only expressed in the presence of low concentrations of nitrate 
(for review see Williams & Miller, 2001; Glass et al., 2002; Glass, 2009). At 
higher concentrations (0.50 mM to 50 mM) low-affinity transporter systems 
(LATS) are largely responsible for nitrate uptake. Depending on species 
LATS can be both constitutive and inducible, leading to four nitrate 
transporter systems in Arabidopsis (Tsay et al., 2007; Glass, 2009).The 
transporter systems responsible for ammonium uptake, like nitrate uptake 
systems, are divided into HATS and LATS (Williams & Miller, 2001), 
HATS being chiefly responsible for ammonium uptake at concentrations up 
to 200 µM (Williams & Miller, 2001). Several transporters belonging to the 
nitrate transporter family (NRT) and others belonging to the ammonium 
transporter family (AMT) have been identified in Arabidopsis (Tsay et al., 
2007; Williams & Miller, 2001; Glass et al., 2002). 

1.4.2 Amino acid transporters in roots 

The confirmation that amino acid uptake in plants is an active process has 
been important in physiological studies of amino acid uptake in plants. 
When I started my PhD studies amino acid transporters had been identified, 
but none had been localized to roots and shown to be specifically involved 
in root uptake. Physiological studies had led to the hypothesis that plants 
have two separate transport systems, one for neutral/acidic amino acids and 
one for basic amino acids (Kinraide, 1981; Datko & Mudd, 1985; Borstlap et 
al., 1986; Schobert & Komor, 1987). Today, plant uptake of amino acids is 
thought to be energized by the proton gradient across the plasma membrane 
and facilitated by transport proteins (cf. Liu & Bush, 2006; Rentsch et al., 
2007). These transporters may function in the acquisition of amino acids 
from the soil solution as well as in the recapture of amino acids leaking from 
roots (Jones et al., 2005). Three amino acid transporters have been identified 
as components of the amino acid uptake system in the model plant 
Arabidopsis: lysine histidine transporter 1, LHT1 (Hirner et al., 2006; 
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Svennerstam et al., 2007), amino acid permease 1, AAP1 (Lee et al., 2007) 
and amino acid permease 5, AAP5 (Svennerstam et al., 2008). LHT1 displays 
high affinity for neutral amino acids, histidine (Hirner et al., 2006; 
Svennerstam et al., 2007) and acidic amino acids (Hirner et al., 2006), AAP1 
(Lee et al., 2007) has been shown to mediate uptake of several neutral amino 
acids, glutamic acid and histidine, AAP5 displays activity for arginine and 
lysine, neither of which are taken up by LHT1 or AAP1 (Svennerstam et al., 
2008). 

The mechanisms regulating of the activity of each of these transporters 
are still relatively unknown. Their relative importance for uptake of different 
amino acids at field-relevant concentrations is also currently unclear. In this 
context it should be noted that it is not just the ability of plants to take up 
FAA that needs to be elucidated, but also their importance as plant N 
sources. For instance, a factor that might regulate the activity of these 
transporters is the presence of IN, but interactions between uptake of amino 
acids and IN has not been thoroughly studied. If IN inhibits or abolishes the 
uptake of amino acids, the ecological relevance of amino acid transporters in 
IN-rich environments could be questioned. Alternatively, amino acid 
uptake might be less inhibited by the presence of IN than vice versa 
(Thornton & Robinson, 2005). Indeed, the presence of amino acids (e. g. 
glutamine) has been found to inhibit uptake of nitrate and ammonium 
(Rawat et al., 1999; Vidmar et at., 2000; Aslam et al., 2001; Thornton, 
2004). Amino acid transporter systems might also share similarities with IN 
transporter systems in addition to being concentration-dependent. 

The LHT1 and AAP5 amino acid transporters might be HATS for amino 
acid uptake (Hirner et al., 2006; Svennerstam et al., 2007, 2008). If so, it 
would be interesting to determine whether they were constitutive or 
inducible transporter systems, and the ecological implications of their status. 
However, despite the similarities between IN and amino acid transporter 
systems the inducibility of the latter has rarely been explored (Hirner et al., 
2006; Liu & Bush, 2006). 
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2 Objectives 

The overall aims of the studies this thesis is based upon were to elucidate 
key aspects of amino acid uptake by agricultural plants and assess its 
importance. To do this, a series of both field and laboratory studies were 
designed and performed in order to combine the relevance of the former 
and precision of the latter. The studies and results are described in detail in 
the four papers (Papers I-IV) appended to the thesis. Briefly, however, the 
amino acids that occur in agricultural soils were identified and quantified 
(Papers I and II). Based on this information, uptake experiments were 
carried out to assess whether plants can take up the identified amino acids at 
field-relevant concentrations (Papers II and III). Further, to acquire more 
information about the mechanisms involved, attempts were made to 
characterise the transporters involved in the uptake of amino acids at 
ecologically relevant concentrations (Paper III). In addition, given the 
simultaneous presence of IN and amino acids in soil, and the fact that IN is 
considered to be the main N source for plants, a further field-relevant issue 
investigated whether IN influences uptake of amino acids and/or vice versa 
(Paper IV). Finally, since uptake of amino acids shares similarities with IN 
uptake, the inducibility of amino acid uptake systems was investigated (Paper 
IV). 

The studies described in the four papers are schematically presented in 
Figure 4. 
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Figure 4. Schematic view of the relevance and precision extended by the included studies of 
this thesis. 
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3 Materials and methods 

3.1 Soil solution sampling  

In order for a substance to be taken up by an organism, it needs to be in the 
vicinity of the organism. Thus, for amino acids to be taken up by roots, they 
must be present in the soil solution. However, most investigations on the 
occurrence of amino acids in soil have examined their presence in soil 
extracts (Schulten & Schnitzen, 1997, Kielland et al., 2007). This 
complicates comparisons of relevant published data, since amino acid 
concentrations in soil extracts are usually expressed in relation to soil dry 
mass (g N g-1), rather than as (molar) concentrations in soil solution per se. 

Due to the rapid turnover of FAA in soil (Jones, 1999; Lipson et al., 
2001; Owen & Jones, 2001; Jones & Kielland, 2002; Jones et al., 2005; Jones 
et al., 2009) it is important to ensure that the technique used for sampling 
them causes minimal disturbance, and hence minimal changes to the 
concentrations of the measured compounds during sampling and processing. 
Soil extraction methods are convenient for acquiring samples for analyzing 
FAA contents in soil without tedious preparation in the field or laborious 
adjustments to meet exacting instrument requirements. However, there are 
inevitable time lags between sampling and soil extractions, which given the 
rapidity of FAA turnover in soils could cause chemical alterations prior to 
analysis. They also inevitably involve disruption of the in situ soil structure 
since the soil is sampled, roots are removed from samples and soils are sieved 
or only small amounts of soil are used. Therefore, the measured amino acid 
concentrations do not necessarily show the amounts that are directly 
available to plant roots. Further, there are risks of substantially over- or 
under-estimating amino acid concentrations in soil solutions when using 
water extractions or centrifugation, because of the difficulties involved in 
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sampling the solution without destroying soil aggregates, fine roots and 
fungal hyphae. Excluding roots always entails a risk of cell lysis or exudative 
burst (Jones et al., 2005a). This may be particularly important when 
measuring BAA in soil HCl extracts rather than soil solution. The risk of 
lysing living microbial biomass is reduced when the aqueous phase of the 
soil rather than the soil per se is hydrolysed (Roberts & Jones, 2008).  

In order to obtain representative samples to analyse soil solution 
concentrations of amino acids, ideally both disturbance of the soil-plant 
system and the risks of over- or under-estimating soluble N pools due to the 
production or decomposition of N compounds during sampling and 
handling of soil samples should be minimised. Recent studies suggest that 
sampling of soil solutions using small tension lysimeters (Fig. 5) may fulfil 
these requirements (Andersson, 2003; Andersson & Berggren, 2005; Robert 
& Jones, 2008). The use of small tension lysimeters (P2.30-1 Rhizon Soil 
Moisture Samplers, Eijkelkamp, Giesbeek, The Netherlands) reduces the 
risk of degradation of N compounds before analysis (Andersson, 2003) since 
the likelihood of microbial decomposition of organic compounds is 
minimized when the solution is sampled by percolation through the small 
pores (0.1 µm diameter) of the lysimeter (Andersson, 2003). When using 
this method a lysimeter (2.5 mm diameter and 10 cm long) is carefully 
inserted into the soil to be sampled and soil solution is collected by suction 
(Fig. 5). Some disturbance of the soil can be expected when the lysimeter is 
inserted into the soil and when solution is removed, but it will be very 
minor in comparison with extractions. The solution can be sampled in the 
presence of plant roots, and with minimal risk of altering chemical 
composition, enabling robust assessment of in situ levels of organic and 
inorganic N compounds. 

 
Figure 5. Lysimeter installed in the field for sampling soil solution (Papers I, II). Soil has been 
excavated to show the position of the lysimeter. Photo: Ines Barth and Kerstin Huss-Danell. 



 25 

However, lysimeter sampling is limited by its dependence on quite high 
soil moisture contents, and it gives bulk concentrations, probably biased 
towards the concentrations in the largest water-filled soil pores, since pores 
tend to empty in order of size, starting with the largest soil pores, in 
accordance with associated differences in water potential. Measured 
concentrations may not therefore reflect true amplitudes of concentration, 
i.e. the maximum concentrations will be diluted. In addition, despite 
sampling at (relatively) micro-scale the proximity of the analytes to roots is 
unknown. Further, the variations of concentrations that are probably present 
in the soil cannot be elucidated. Turnover of soil organic matter most likely 
leads to some microsites having considerably higher FAA concentrations 
than those indicated by results from available methods. The high FAA 
concentrations found in, for example, plant root cells (1-10 mM; Jones & 
Darrah, 1994) support this hypothesis. Further studies of the usefulness of 
lysimeters and other methods for assessing the heterogeneity of amino acid 
concentrations available to plant roots in the micro-scale of the rhizosphere 
would therefore be of great value. 

However, an important advantage of small tension lysimeters is the 
possibility they provide to investigate temporal and spatial variations in the 
occurrence and concentrations of compounds. This might give a wider 
understanding of the environment that roots encounter. Because of the 
advantages of sampling soil solution from intact soil and the possibility of 
repeated measurements, they were used to investigate the concentrations of 
FAA, nitrate, ammonium (Papers I and II) and BAA (Paper I) available to 
plants in soil solution of various kinds of agricultural land. 

3.2 Amino acid uptake 

3.2.1 Solution depletion 

To study amino acid uptake in barley and Arabidopsis at ecologically 
relevant concentrations, and lower, plants were grown in hydroponic 
culture and depletion of amino acids in a known volume of medium was 
monitored over time, as illustrated in Figures 6 and 7 (Papers II, IV). 
Solution depletion is convenient for such studies, since the concentration 
and composition of the amino acid solution can be easily controlled, the 
composition of the medium can be kept homogeneous around the roots by 
gently bubbling air through it, and it is not altered by amino acids (or other 
substances) physically or chemically binding to soil particles. Hence, it is a 
good method for investigating the factors involved in regulating amino acid 
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uptake, e.g. concentration dependencies (Paper II) and the compounds 
plants prefer to take up, when more than one is available (Paper IV). Unlike 
the use of isotopically-labelled amino acids this method gives indications of 
the net uptake of amino acids, i.e. uptake minus efflux. In the perspective of 
a whole plant N budget this is advantageous, but it might result in 
underestimations of uptake rates. 

 
Figure 6. Barley plants in a solution uptake study (Papers II, IV). Tubes for aeration of 
solution and sterile filters attached to needles are seen in the background. 

The relevance and applicability of the results from solution depletion 
studies to natural conditions can, of course, be questioned because of the 
exclusion of physical and chemical binding of amino acid to soil particles, 
heterogeneity of the nutrient concentration and microbial competition 
(Jones et al., 2005a). Uptake rates measured in solution should not therefore 
be extrapolated to soil because of these factors, and plant-related factors, e.g. 
changes in root architecture, lack of mycorrhiza and poor root hair 
development (Jones et al., 2005a). Other disadvantages of solution depletion 
studies are the often unrealistic temperatures, unrealistic nutrient 
enrichments and homogeneous concentrations used (Hodge et al., 2000). 
Complementary field studies should ideally be conducted, of course, to 
verify the ecological relevance of any findings, but are difficult to perform. 
However, solution depletion studies in which the disappearance of amino 
acids from a solution of known concentration is monitored in short-term 
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laboratory experiments are valuable for quantifying uptake, and for assessing 
differences between uptake systems in relation to concentration, e.g. 
between amino acid and IN transporters (Paper IV). 

 
Figure 7. Arabidopsis plants in a solution uptake study (Paper IV). Sterile filters on needles for 
aeration of solution are seen from above. 

3.2.2 Isotopically-labelled amino acids 

When measuring amino acid uptake in plants it is essential to check that the 
amino acid is taken up in intact form and not as breakdown products of 
microbial activities. For this purpose, dual (13C and 15N)-labelled amino acids 
can be used. The relationship between excess 13C and excess 15N in plants at 
the end of uptake experiments can then be used to calculate the amount of 
intact amino acid they took up (Näsholm et al., 1998; Näsholm et al., 2000). 
Dual-labelled amino acids are useful in field studies and have been used to 
study the uptake of intact amino acids in agricultural plants in field 
(Näsholm et al. 2000; Näsholm et al., 2001). This method was used to 
evaluate measured uptake by solution depletion (Paper II).  

A methodological limitation to keep in mind when using 13C,15N-labelled 
amino acids is the high natural abundance of 13C (Näsholm & Persson, 2001; 
Nordin et al., 2001; Miller & Bowman, 2003; Persson et al., 2003). This can 
make detection of excess 13C in plant material impossible when using low 
concentrations of 13C because of the dilution from naturally occurring 13C. 
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Another restriction is that dual-labelled amino acids can only be used to 
indicate uptake of intact amino acids in short-term studies since C may be 
lost through respiration from the plant, resulting in alterations of the 13C/15N 
ratio. Because of the risk of such changes in ratio and the importance of 
verifying uptake of amino acids, long-term studies of root uptake of intact 
amino acids are currently only possible under axenic conditions in the 
laboratory. 

14C-labelled amino acids were used in the study described in Paper III to 
measure amino acid uptake during 1 h. As for the use of dual-labelled amino 
acids, this is a useful method for measuring gross uptake during a short time, 
provided that the amino acid remains intact until taken up and risks of 
respiration losses prior to analysis are avoided. Since the natural abundance 
of 14C is very much lower than that of 13C it is a practical method for 
measuring uptake from low concentration solutions (Paper III). 

3.3 Amino acid uptake mechanisms 

In the studies reported in Papers III and IV, Arabidopsis (a member of the 
Brassicaceae family) was used because abundant genetic information, huge 
arrays of mutants and advanced molecular tools are available for analyzing 
this species (more so than for any other plant species, e.g. barley). Therefore, 
a selection of the available tools, and mutants, were used to explore the 
molecular background of amino acid uptake and its putative role in plant N 
nutrition. 

In attempts to identify transporters involved in the high affinity uptake of 
amino acids (Paper III), mutants lacking expression of the genes LHT1, 
AAP1 or AAP5 and plants overexpressing LHT1 – according to previous 
findings (Hirner et al., 2006; Lee et al., 2007; Svennerstam et al., 2007, 2008) 
– were used. Regulation of the transporters these genes encode was studied, 
with and without exposure to amino acids, in the presence of IN (Paper IV). 
The amino acids used in these experiments were glycine and arginine, since 
they had been shown to be taken up by separate transporter systems at field-
relevant concentrations (Paper III). To assess uptake preferences the plants 
were exposed to these amino acids, nitrate and ammonium at two, 
equimolar concentrations that were thought to represent high and low 
affinity concentrations (50 and 500 µM, respectively). 
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4 Results and discussion 

4.1 Occurrence of amino acids in soil solution 

In assessments of the relevance of plant amino acid uptake under ecological 
conditions it is essential to have information on FAA concentrations in soil. 
Therefore, FAA concentrations were measured in soil solutions from five 
kinds of agricultural (or formerly agricultural) soils: under organically grown 
(fertilized) iceberg lettuce, organically grown (unfertilized) ley, old grassland 
and thinned birch forest on old pasture (Paper I) and fertilized barley (Paper 
II). In all cases they were found to be low (0.1-12.7 µM). FAA 
concentrations in agricultural soils are generally thought to be lower than in 
boreal or alpine ecosystems, and they have been found to increase along a 
boreal forest succesional gradient (Werdin-Pfister et al., 2009). However, 
the use of different methods (see Material and Methods) by different authors 
complicates comparisons, as does the predominance of studies in natural 
ecosystems of northern latitudes. Nevertheless, the measured concentrations 
of FAA in soil solutions (Papers I, II) were clearly in the lower end of 
previous findings, which range from 0-158 µM (Raab et al. 1999; Jones et 
al., 2005). 

In contrast to the low FAA concentrations, the concentrations of BAA 
were high, up to 50 times higher (10-75 µM, sum of hydrolysed BAA) 
indicating that BAA is a potential replenishment pool of FAA (Paper I). 
BAA was the dominant N pool measured (Paper I), and present at higher 
concentrations than nitrate and ammonium, except in fertilized soil. The 
nitrate concentration was approximately 2 mM in soil solution under both 
lettuce (Paper I) and barley (Paper II), just after fertilization. The 
concentrations then decreased very rapidly (due to plant uptake, 
immobilization, leaching etc.) to levels even lower than those of FAA in 
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soils under barley in October. The ammonium level was quite constant 
throughout the seasons in both of these arable soils. Concentrations declined 
in the order BAA>>ammonium>nitrate and FAA in the unfertilized soils 
(old grassland, birch forest and organically grown ley), but although 
concentrations of FAA were the lowest there was no significant difference 
between them and either the ammonium or nitrate concentrations (Paper I). 
These results, which are consistent with findings reported by Young & 
Aldag (1982), show that the reserves of FAA were higher than those of 
ammonium and nitrate. The size of the replenishment pool might therefore 
be of importance since the FAA production rate, together with the diffusion 
rate, is thought to be a major determinant of FAA availability in the 
rhizosphere (Leadley et al., 1997). 

The size of each N-pool was surprisingly similar in all of the soils 
analyzed in the study reported in Paper I, despite major differences in 
vegetation types and previous histories. Hence (inter alia), in contrast to 
findings by Werdin-Pfister at al. (2009), growth of birch forest on the old 
pasture does not seem to have significantly influenced the concentration of 
FAA in the soil, raising questions about the reasons for the differences in 
results. One likely factor is that the successional gradient between vegetation 
types was probably larger in the study by Werdin-Pfisterer et al. (2009). 
Differences in FAA concentrations related to the boreal forest succession 
stage have been attributed to rates of protein depolymerisation increasing 
more rapidly than rates of amino acid breakdown as succession proceeds 
(Kielland et al., 2007). Depolymerisation of protein N is considered to limit 
not only plant availability of FAA, but also the overall rate of the N cycle of 
soils (Schimel & Bennett, 2004, Rennenberg, 2009). From our 
measurements (Paper I) it is not possible to draw any conclusions regarding 
flux rates in soil. Hypothetically, depolymerisation could limit FAA 
availability (Jan et al., 2009) in the studied soils, but there are many other 
influential factors, for example plant uptake. 

In three of the soil types considered in Paper I, BAA dominated over IN. 
The main FAAs in all soils examined, including the soil under barley (Paper 
II), were serine, glycine and alanine. However, the relative proportions of 
FAA differed between the two geographical locations of the sites (Timrå and 
Ängersjö) in Paper I). Assuming that BAA acts as a replenishment pool for 
FAA, differences in proportions between the two locations indicate that 
processes involved in BAA depolymerisation and/or consumption of FAA 
could alter the FAA profile. However, relative proportions of BAA in the 
four soil types described in Paper I were very similar. This could be due to 
the BAA at the sites having similar origins, the amino acid composition of 
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proteins from different organisms being very similar, or the decomposition 
of organic matter or uptake by organisms (fungi, bacteria, plants) being in 
some way selective. BAA and FAA have been hypothesised to be of mainly 
microbial origin (Sowden et al., 1977; Stevenson et al., 1982; Schulten & 
Schnitzen, 1997), thus the composition of BAA could reflect the 
proportions of amino acids in recalcitrant microbial cell structures. In 
contrast, cytoplasmic proteins have been hypothesized to be readily 
accessible for degradation, leading to decreased abundance of the amino 
acids they contain during breakdown. Subsequently, N from resistant 
structures such as cell walls from bacteria (peptidoglycan), fungi and plants 
might accumulate (Rovira et al., 2008). According to proteomic studies the 
amount of microbial (bacterial and fungal) protein might increase with 
increasing decomposition of plant debris (Schulze, 2005). Another way to 
identify the origin of some amino acids is to analyse the isomers of alanine, 
aspartic acid and glutamic acid, since the D-isomers of these amino acids are 
found predominantly in cell walls of bacteria (Davies, 1977). 

Analysis of soil solution concentrations of FAA provides a snapshot of the 
concentrations, but no indications of their production and consumption 
rates (fluxes). To evaluate uptake ability by plants, it is essential to supply 
them in ecologically relevant concentrations, but to estimate the quantitative 
importance of FAA, knowledge of their fluxes is also important, since (for 
instance) a low concentration might be due to high consumption rates 
and/or low production rates. Some relevant information, on both the ability 
of plants to take up FAA and fluxes, can be obtained by using isotopically 
labelled substances. Despite the problems and uncertainties, and the low 
concentrations of FAA detected in soil solutions in agricultural lands (Papers 
II, III), the results presented in Papers II and III strongly indicate that plants 
have the capacity to take them up. In addition, there seems to be a large 
potential replenishment pool of BAA.  

4.2 Characterisation of amino acid uptake at field-relevant 
concentrations 

In most studies of plant uptake of amino acids have been done at 
concentrations considerably higher concentrations than those measured in 
the field. Concentrations of FAA in studied soils (Papers I, II) were in the 
lower µM range. However, the studies described in Papers II and III show 
that barley and Arabidopsis, respectively, have the capacity to take up amino 
acids at these concentrations. This indicates that the capacity of these plants 
to take up amino acids is not restricted by a Cmin, since depletion of the 
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uptake solution continued even when concentrations were very low (Paper 
II). These results are in line with previous studies of excised roots (Soldal & 
Nissen, 1978; Kielland, 1994).  

4.2.1 Amino acid uptake kinetics 

From data presented in Papers II and III conclusions can be made that 
uptake of amino acids is possible at ecologically relevant concentrations and, 
hence, uptake kinetics can be used to evaluate the importance of amino acid 
uptake systems in plants under such conditions. Uptake of amino acids 
showed concentration-dependency, increasing with increased concentrations 
of single amino acids (Paper III), five amino acids simultaneously present 
(Paper II) and single amino acids in the presence of IN (Paper IV). To 
evaluate uptake capacities of barley and Arabidopsis for the tested amino 
acids at ecologically relevant concentrations, the concentration dependencies 
reported in Papers II and III were described by Michaelis-Menten kinetics. 
The results could be compared with published data on both uptake by soil 
micro-organisms (Paper II) and the kinetic parameters of several amino acid 
transporters involved in amino acid uptake at these concentrations (Paper 
III). Uptake capacities of any uptake system depend on both Km and Vmax, 
which govern potential influxes. Uptake affinities of each of the five tested 
amino acids in barley varied between 19.6 and 33.2 µM (for arginine and 
alanine, respectively; Paper II). In wild type Arabidopsis plants the affinity 
for arginine was found to be within the same range as in barley (7.6 µM), 
which is lower than most, but not all, published values (Lipson & Näsholm, 
2001). These results, in agreement with Soldal and Nissen (1978), show that 
barley and Arabidopsis have uptake affinities for amino acids within the 
lower µM range and indicate that they do not have Cmin uptake values that 
are higher than concentrations measured in the field. 

Transporters shown to be involved in amino acid uptake in plants seem 
to have broad specificity (Hirner et al., 2006; Svennerstam et al., 2007, 2008, 
Lee et al., 2007), indicating that uptake rates by a specific transporter may 
depend on the total concentration of amino acids that it is potentially 
capable of transporting, rather than the concentration of individual amino 
acids. In soil solution amino acids occur in mixtures, which could explain 
the similar concentration dependencies shown in Paper II for the tested 
amino acids. Further, the uptake kinetics reported in Paper II may be more 
strongly related to the sum of concentrations and uptake rates of the four 
amino acids (serine, glutamic acid, glycine and alanine) probably transported 
by LHT1 (Paper III) rather than to any individual amino acid. However, it 
is not possible to draw definite conclusions regarding this matter since there 
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have been no in planta comparisons of single and multiple amino acid 
uptakes by a certain transporter within the same species. Uptake rates for 
single amino acids are presented in Paper III and for simultaneous uptake of 
five amino acids in Paper II, but in different plant species. 

Besides the similarities there are also differences between enzyme and 
transporter kinetics. Notably, transportation might not be controlled solely 
by substrate availability on the outside of the plasma membrane, but also by 
various factors inside the cell. For instance, amino acid transport over the 
plasma membrane could result in the accumulation of amino acids in the 
cytosol, which in turn might inhibit further uptake. Therefore, the 
applicability of Michaelis-Menten kinetics to amino acid uptake has been 
questioned, since only changes in external concentrations of the amino acids 
are generally considered (Reinhold & Kaplan, 1984). Furthermore, in 
contrast to unicellular organisms, amino acids may not necessarily be 
accumulated in the cytosol of the cells that take them up when studying 
uptake in intact roots since the amino acids could be compartmentalized, 
translocated to other cells or metabolized. Despite all these differences, 
Michaelis-Menten kinetics is useful for transporter characterisation. 

Published values of Km in plants show large variations (Soldal & Nissen, 
1978; Schobert & Komor, 1987; Jones & Darrah, 1994; Kielland, 1994; 
Frommer et al., 1995; Chalot & Brun, 1998; Breitkreuz et al., 1999; 
Wallenda & Read, 1999). However, the results outlined above indicate that 
amino acid uptake systems in plants have affinities within concentration 
ranges of soil solutions in the field, and the kinetic parameters of the uptake 
appear to reflect those of the corresponding amino acid transporters (as 
discussed in further detail below). 

4.2.2 Transporters involved in amino acid uptake at field-relevant 
concentrations 

To date, three amino acid transporters involved in amino acid uptake in 
plants have been identified: LHT1 (Hirner et al., 2006; Svennerstam et al., 
2007), AAP1 (Lee et al., 2007) and AAP5 (Svennerstam et al., 2008). The 
results presented in Paper III support the hypothesis that there are two 
separate transporter systems for amino acids, accounting for most of the 
uptake at field-relevant concentrations ≤50 µM (Kinraide, 1981; Datko & 
Mudd, 1985; Borstlap et al., 1986; Schobert & Komor, 1987); one for 
neutral and acidic amino acids (LHT1) and one for basic amino aids (AAP5).  

However, uptake of amino acids has been found to be multiphasic over 
large concentration ranges (Soldal & Nissen, 1978). This, together with the 
variations in Km (see previous section), indicates that transporter systems with 
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different affinities are probably involved in the uptake of amino acids at 
different concentrations, analogously to the uptake of IN at low and high 
concentrations predominantly by HATS and LATS, respectively (Williams 
& Miller, 2001; Tsay et al., 1997; Glass, 2009). Plants lacking expression of 
AAP1 did not show any significant differences in uptake in comparison with 
wild type plants at concentrations ≤50 µM (Paper III). This finding, together 
with results of studies by Lee et al. (2007), indicate that AAP1 is a potential 
candidate for uptake at higher concentrations (LATS), above 50-150 µM. If 
plants have separate systems for uptake of amino acids at high and low 
concentrations LHT1 and AAP5 are probably HATS (Paper III), while 
AAP1 is probably a LATS (Lee et al., 2007).  

Measured uptake affinities for these potentially high affinity transporters 
(Paper III) were found to be comparable to those of nitrate iHATS in 
Arabidopsis (Touraine & Glass, 1997), which is interesting given the 
similarity of the concentrations of FAA and nitrate found in unfertilized 
agricultural soils (Paper I). In addition to being IN concentration-
dependent, IN uptake has been found to be IN-induced (Glass, 2009), and 
influenced by the presence of amino acids (Miller & Cramer, 2005), but 
corresponding interactions for uptake of amino acids had not been as 
thoroughly studied, therefore, these aspects of amino acid uptake were also 
examined, as discussed below. 

4.2.3 Amino acids induce increases in uptake capacities, even in the 
presence of IN 

What similarities are there between amino acid and IN transporter systems? 
Uptake of amino acids has been found to be dependent on concentration, as 
is uptake of IN. In accordance with uptake of IN, results presented in Paper 
IV clearly show that amino acid uptake is also inducible; uptake of glycine 
and arginine by both barley and Arabidopsis increased with the duration of 
exposure to these amino acids in the presence of IN. Uptake rates of 
glycine, arginine increased up to 15-fold following exposure to them. 
Exposure to the amino acids for 6-24 h also increased expression of LHT1 
and AAP5 genes, indicating that this effect is related to increased synthesis of 
transporters. The results suggest that both of these systems might be 
inducible HATS (iHATS) rather than constitutive HATS (cHATS), raising 
questions about some of the conclusions (and implications) of previous 
studies, in which uptake rates have usually been measured in plants 
cultivated on ammonium nitrate as the sole N source. The novel findings 
that induction can dramatically increase amino acid uptake rates suggest that 
previous studies of amino acid uptake, including those described in Papers II 
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and III, could have characterised non-induced uptake rates (which may be 
substantially lower than post-induction rates, analogously to iHATS nitrate 
uptake patterns). The induction systems may help to conserve valuable 
resources by tailoring N uptake capacity to current N availability, allowing 
amino acids to be taken up by weakly expressed constitutive systems when 
they are present at low concentrations, and at greatly increased rates by 
induced systems when present at high concentrations. 

There are also indications that amino acid induction influences plants’ 
preferences for N compounds (Paper IV; Thornton & Robinson, 2005). 
The observed induction of amino acid uptake indicates that root uptake 
capacities are closely related to the recent soil solution composition, since 
the capacity for amino acid uptake increased under inductive conditions for 
24 h, and did not reach a steady state or decline during this time. Further 
studies of this process are needed to assess the effects of amino acid induction 
on the preferential uptake of N compounds from the soil, notably 
interactions between the uptake of amino acids and IN, which might have 
important ecological implications. Results of such studies, together with 
those described above, may significantly enhance our understanding of the 
role and significance of amino acid uptake in plants (Jones et al., 2005). 

4.2.4 Uptake of amino acids in the presence of IN 

Early studies of amino acid uptake attempted to assess the importance of 
amino acid uptake by comparing it with IN uptake, but usually in the 
absence of IN (Chapin et al., 1993; Schimel & Chapin, 1996; Raab et al., 
1999). The effects of increasing internal cytosolic concentrations of amino 
acids on IN uptake have also been investigated (Rawat et al., 1999; Vidmar 
et al., 2000; Thornton, 2004). However, plants’ preferences for taking up 
amino acids, relative to other N sources, have rarely been addressed 
(Thornton & Robinson, 2005). This is an important issue, because in soil 
solutions IN and amino acids are usually present simultaneously, at highly 
variable but often similar concentrations (Paper I). Uptake of both nitrate 
and ammonium seems to be inhibited by increased cytosolic concentrations 
of amino acids, especially glutamine (Rawat et al., 1999; Vidmar et al., 
2000). Thus, high internal concentrations of amino acids are known to affect 
IN uptake. A further aim of the studies this thesis is based upon was to 
determine whether IN may similarly affect amino acid uptake. More 
specifically, my colleagues and I explored the effects of exposure to mixtures 
of amino acids and IN on the amino acid uptake rates of root systems 
cultivated in amino acid-free media. In Arabidopsis roots that had not 
previously been exposed to amino acids nitrate was taken up at the highest 
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rates from solutions containing 50 µM or 500 µM of glycine, arginine, 
nitrate and ammonium (0 h, Paper IV). These measured uptake rates of 
nitrate and simultaneous uptake rates of ammonium were similar to 
published uptake rates for each compound supplied alone (Touraine & 
Glass, 1997; Rawat et al., 1999). After amino acid exposure (at 50 µM) for 
24 h, uptake of glycine and arginine increased, to similar rates to those of 
nitrate and at 500 µM the uptake rate for each amino acid was 6-10 times 
higher than that of nitrate (Paper IV). This effect was partly due to a 
reduction in the nitrate uptake rate, but mainly to a dramatic increase in 
amino acid uptake. These results imply that measurements of the uptake of 
single IN sources might be overestimates (Thornton & Robinson, 2005). 
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5 Conclusions 

According to standard textbooks, nitrate and ammonium are considered to 
be the major N sources for plants. Is that consistent with current knowledge, 
and should plants also be regarded as consumers of FAA? The ability to take 
up amino acids is widespread among plant species, but the ecological and 
physiological implications of this ability are not fully understood. The results 
presented in this thesis indicate that FAA concentrations in agricultural soils 
are low, but might be continuously replenished (Papers I, II). Furthermore, 
uptake systems in barley and Arabidopsis do not seem to be constrained by a 
Cmin higher than these concentrations (Papers I, II, III). The uptake affinity 
in both barley and Arabidopsis was found to be comparable to reported 
values for nitrate at corresponding concentrations, and for uptake of amino 
acids by soil micro-organisms. Thus, uptake of amino acids by these species 
could occur in the field, from soil solutions with observed concentrations. 
At these concentrations two transporter systems, LHT1 and AAP5, were 
identified as likely mediators of most amino acid uptake in Arabidopsis 
(Paper III). These two transporters were found to have complementary, 
non-overlapping affinities for different amino acids, LHT1 transporting 
acidic and neutral amino acids and AAP5 basic amino acids, while the 
importance of other transporters, such as AAP1, appeared to be low. The 
expression of LHT1 and AAP5 was clearly shown to increase following 
exposure of roots of Arabidopsis to amino acids, despite the simultaneous 
presence of IN (Paper IV). In addition, increased uptake of amino acids 
related to induction was shown in both barley and Arabidopsis and resulted 
in up to 15-fold increases in uptake rates. It is therefore highly likely that 
amino acids are taken up simultaneously with IN in the field. The finding 
that the presence of amino acids induces increases in uptake rates 
complicates attempts to define plants’ preferences for N sources, since 
uptake preferences were found (inter alia) to depend on the duration of 
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amino acid exposure. However, induced uptake rates of amino acids in 
Arabidopsis were up to 10 times higher than nitrate uptake rates. Thus, the 
recent history of proportions and concentrations of these N sources 
encountered by roots in the soil may be important determinants of plant 
uptake preferences for N sources. The results show, that plants possess 
organic nitrogen uptake systems that have many features similar to those 
used for inorganic nitrogen uptake. 

The results of the work underlying this thesis show that plants have the 
capacity to take up amino acids at field concentrations. This capacity 
requires gene expression, synthesis and regulation of amino acid transporters, 
and the ability of plants to sense and respond to changes in external amino 
acid concentrations. One can expect, therefore, that plants can take up 
amino acids in their natural environment. Thus, it is time to reconsider 
traditional views of the nitrogen compounds used by agricultural plants. 
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6 Future perspectives 

Insights gained into various aspects of plant amino acid uptake are presented 
above. A future challenge is to understand how this ability can be exploited. 
To make full use of this ability further knowledge on the regulation of 
uptake, induction, metabolism and growth on different amino acids as well 
as other ON compounds is needed. Due to the wide distribution of this 
ability among plant species it would be valuable to include species with 
different growth strategies in studies of these phenomena. It is also important 
to study the regulation of amino acid uptake in the presence of IN, since the 
metabolism and regulation of organic and inorganic nutrient sources are 
probably interconnected. Another great challenge is to elucidate the 
influence of soil properties on uptake capacities and preferences of ON and 
IN, to ensure that any conclusions have ecological relevance. However, the 
greatest challenge might be to develop methods capable of providing a clear 
understanding of the fluxes and short-term, micro-scale variations of ON 
and IN concentrations that roots encounter in intact root-soil systems. 

Knowledge gained through further research of nitrogen inputs in 
agricultural systems is important for the challenge to develop ways to 
maintain rates of food production, without causing eutrophication of 
surrounding environments via N leaching, and possibly for optimising 
fertilization by tailoring it to match plant uptake capacities. Further 
improvements could also be potentially gained by identifying, breeding or 
engineering plants with increased N uptake capacities, which may need less 
surplus N additions. 
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7 Sammanfattning 

Förekomst av aminosyror i jordbruksmark och hur de tas upp av 
växter 

För att få så stor skörd som möjligt i dagens jordbruk och för att få kraftiga, 
gröna pelargonior i köksfönstret är det framför allt kvävet i den gödsel som 
tillförs som ger denna effekt.  

Enligt många läroböcker anses nitrat och ammonium vara de två 
kväveföreningar som växterna tar upp i rötterna och använder för sin 
tillväxt. Hur stämmer den uppfattningen överrens med den kunskap som vi 
har idag? Finns det andra kväveformer som växter kan använda? Ny 
forskning visar att växters förmåga att ta upp aminosyror är vida spridd bland 
olika växtarter. Trots detta är den ekologiska och den fysiologiska betydelsen 
av denna förmåga dåligt känd.  Denna avhandling fokuserar på de 
förutsättningar som finns för aminosyraupptag i jordbruksväxter, genom att 
kombinera relevansen i fältförsök med precisionen i lab-experiment.  

Med hjälp av små lysimetrar samlades markvätska från olika typer av 
jordbruksmark med minimal störning av marken. Markvätskans innehåll av 
olika kväveföreningar analyserades. Koncentrationen av fria aminosyror var 
låg, men sannolikt sker det en kontinuerlig tillförsel av aminosyror från 
nerbrytningsprocesser i marken. De aminosyrakoncentrationer som uppmätts 
i markvätskan användes sedan i upptagsförsök. Trots de låga 
koncentrationerna kunde växthusodlade plantor av både korn och backtrav 
ta upp aminosyrorna. Upptaget begränsades inte av någon lägsta upptagbar 
koncentration. Hos både korn och backtrav var upptagsaffiniteten för 
aminosyror jämförbar med litteraturuppgifter för motsvarande 
koncentrationer av nitrat och jämförbar med upptag av aminosyror hos 
markmikroorganismer. 
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Det studerade aminosyraupptaget skedde till största delen med hjälp av 
två så kallade aminosyratransportörer i rötterna hos backtrav, nämligen 
LHT1 (lysine histidine transporter 1) och AAP5 (amino acid permease 5). 
Tack vare olika egenskaper hos de två transportörerna kompletterar de 
varandra i upptag av aminosyror: LHT1 transporterar sura och neutrala 
aminosyror och AAP5 basiska aminosyror. Betydelsen av andra 
aminosyratransportörer såsom AAP1 var liten i de utförda experimenten. 

Genuttrycket av LHT1 och AAP5 visade en tydlig ökning efter att 
rötterna exponerats för aminosyror, och detta skedde trots samtidig närvaro 
av nitrat och ammonium i lösningen. Då rötterna hade exponerats för 
aminosyror innan mätningarna började blev aminosyraupptaget upp till 15 
gånger så högt som upptaget utan föregående exponering, det skedde således 
en induktion av aminosyraupptag, både hos korn och hos backtrav. När 
växterna hade tillgång till såväl aminosyror som nitrat och ammonium i 
lösningen och då rötterna exponerades för aminosyror innan mätningarna 
började blev upptaget av aminosyror upp till 10 gånger så högt som upptaget 
av nitrat. Dessa molekylära och fysiologiska effekter av att exponera rötterna 
för aminosyror indikerar att växter har system för aminosyraupptag samt att 
systemen för aminosyraupptag och systemen för upptag av oorganiskt kväve 
har liknande egenskaper. 

Resultaten från de arbeten som denna avhandling är baserad på indikerar 
att växter har kapacitet att ta upp aminosyror vid koncentrationer som 
förekommer i markvätska. Denna kapacitet kräver en serie av händelser i 
växten. Det krävs genuttryck, syntes och reglering av aminosyratransportörer 
men också att växten kan uppfatta att det finns en viss koncentration av 
aminosyror i rotmiljön och därvid reagera med denna serie av händelser. De 
studier som denna avhandling beskriver ger stöd för påståendet att växter, i 
sin naturliga miljö, tar upp aminosyror. Det finns således anledning att 
ompröva uppfattningen att jordbruksväxter endast nyttjar nitrat och 
ammonium. 



 43 

References  

 
 Abuzinadah, R.A. & Read, D.J. (1989). The role of proteins in the nitrogen nutrition of 

ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L) infected 
with different mycorrhizal fungi. New Phytologist 112(1), 55-60. 

Andersson, P. (2003). Amino acid concentration in sampled soil water: Effects of sampling 
and storage using lysimeters with small pore-size and sterile pre-evacuated sampling tubes. 
Communications in Soil Science and Plant Analysis 34(1-2), 21-29. 

Andersson, P. & Berggren, D. (2005). Amino acids, total organic and inorganic nitrogen in 
forest floor soil solution at low and high nitrogen input. Water Air and Soil Pollution 
162(1-4), 369-384. 

Aslam, M., Travis, R.L. & Rains, D.W. (2001). Differential effect of amino acids on nitrate 
uptake and reduction systems in barley roots. Plant Science 160(2), 219-228. 

Bajwa, R. & Read, D.J. (1985). The biology of mycorrhiza in the Ericaceae. IX. Peptides as 
nitrogen-sources for the Ericoid endophyte and for mycorrhizal and non-mycorrhizal 
plants. New Phytologist 101(3), 459-467. 

Borstlap, A.C., Meenks, J.L.D., Vaneck, W.F. & Bicker, J.T.E. (1986). Kinetics and 
specificity of amino-acid-uptake by the duckweed Spirodela polyrhiza (L) schleiden. Journal 
of Experimental Botany 37(180), 1020-1035. 

Breitkreuz, K.E., Shelp, B.J., Fischer, W.N., Schwacke, R. & Rentsch, D. (1999). 
Identification and characterization of GABA, proline and quaternary ammonium 
compound transporters from Arabidopsis thaliana. FEBS Letters 450(3), 280-284. 

Bush, D.R. (1993). Proton-Coupled Sugar and Amino-Acid Transporters in Plants. Annual 
Review of Plant Physiology and Plant Molecular Biology 44, 513-542. 

Chalot, M. & Brun, A. (1998). Physiology of organic nitrogen acquisition by 
ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22(1), 21-44. 

Chapin, F.S., Moilanen, L. & Kielland, K. (1993). Preferential Use of Organic Nitrogen for 
Growth by a Nonmycorrhizal Arctic Sedge. Nature 361(6408), 150-153. 

Datko, A.H. & Mudd, S.H. (1985). Uptake of amino-acids and other organic-compounds by 
Lemna paucicostata Hegelm. 6746. Plant Physiology 77(3), 770-778. 



 44 

Davies, J.S. (1977). Occurrence and biosynthesis of D-amino acids. In: Weinstein, B. (Ed.) 
Chemistry and biochemistry of amino acids, peptides and proteins. New York: Marcel Dekker 
inc.; 4). 

Falkengren-Grerup, U., Månsson, K.F. & Olsson, M.O. (2000). Uptake capacity of amino 
acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. 
Environmental and Experimental Botany 44(3), 207-219. 

Finlay, R.D., Frostegard, A. & Sonnerfeldt, A.M. (1992). Utilization of organic and 
inorganic nitrogen-sources by ectomycorrhizal fungi in pure culture and in symbiosis 
with Pinus contorta Dougl Ex Loud. New Phytologist 120(1), 105-115. 

Frommer, W.B., Hummel, S., Unseld, M. & Ninnemann, O. (1995). Seed and vascular 
expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proceedings 
of the National Academy of Sciences of the United States of America 92(26), 12036-12040. 

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., 
Martinelli, L.A., Seitzinger, S.P. & Sutton, M.A. (2008). Transformation of the nitrogen 
cycle: Recent trends, questions, and potential solutions. Science 320(5878), 889-892. 

Ge, T.D., Song, S.W., Roberts, P., Jones, D.L., Huang, D.F. & Iwasaki, K. (2009). Amino 
acids as a nitrogen source for tomato seedlings: The use of dual-labeled (C-13, N-15) 
glycine to test for direct uptake by tomato seedlings. Environmental and Experimental 
Botany 66(3), 357-361. 

Glass, A.D.M. (2009). Nitrate uptake by plant roots. Botany-Botanique 87(7), 659-667. 
Glass, A.D.M., Britto, D.T., Kaiser, B.N., Kinghorn, J.R., Kronzucker, H.J., Kumar, A., 

Okamoto, M., Rawat, S., Siddiqi, M.Y., Unkles, S.E. & Vidmar, J.J. (2002). The 
regulation of nitrate and ammonium transport systems in plants. Journal of Experimental 
Botany 53(370), 855-864. 

Gruber, N. & Galloway, J.N. (2008). An Earth-system perspective of the global nitrogen 
cycle. Nature 451(7176), 293-296. 

Hirner, A., Ladwig, F., Stransky, H., Okumoto, S., Keinath, M., Harms, A., Frommer, W.B. 
& Koch, W. (2006). Arabidopsis LHT1 is a high-affinity transporter for cellular amino 
acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18(8), 1931-1946. 

Hodge, A., Robinson, D. & Fitter, A. (2000). Are microorganisms more effective than plants 
at competing for nitrogen? Trends in Plant Science 5(7), 304-308. 

Hutchinson, H.B. & Miller, N.H.J. (1911). The direct assimilation of inorganic and organic 
forms of nitrogen by higher plants. Centbl. Bakt. II 30, 513-547. 

Jan, M.T., Roberts, P., Tonheim, S.K. & Jones, D.L. (2009). Protein breakdown represents a 
major bottleneck in nitrogen cycling in grassland soils. Soil Biology & Biochemistry 41(11), 
2272-2282. 

Jones, D.L. (1999). Amino acid biodegradation and its potential effects on organic nitrogen 
capture by plants. Soil Biology & Biochemistry 31(4), 613-622. 

Jones, D.L. & Darrah, P.R. (1994). Amino-acid influx at the soil-root interface of Zea mays L 
and its implications in the rhizosphere. Plant and Soil 163(1), 1-12. 

Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F. & Hodge, A. (2005a). Dissolved organic 
nitrogen uptake by plants - an important N uptake pathway? Soil Biology & Biochemistry 
37(3), 413-423. 



 45 

Jones, D.L. & Kielland, K. (2002). Soil amino acid turnover dominates the nitrogen flux in 
permafrost-dominated taiga forest soils. Soil Biology & Biochemistry 34(2), 209-219. 

Jones, D.L., Kielland, K., Sinclair, F.L., Dahlgren, R.A., Newsham, K.K., Farrar, J.F. & 
Murphy, D.V. (2009). Soil organic nitrogen mineralization across a global latitudinal 
gradient. Global Biogeochemical Cycles 23, 1-5. 

Jones, D.L., Shannon, D., Junvee-Fortune, T. & Farrarc, J.F. (2005b). Plant capture of free 
amino acids is maximized under high soil amino acid concentrations. Soil Biology & 
Biochemistry 37(1), 179-181. 

Kerley, S.J. & Read, D.J. (1995). The biology of mycorrhiza in the Ericaceae. 18. Chitin 
degradation by Hymenoscyphus ericae and transfer of chitin-nitrogen to the host-plant. New 
Phytologist 131(3), 369-375. 

Kielland, K. (1994). Amino-acid-absorption by arctic plants - implications for plant nutrition 
and nitrogen cycling. Ecology 75(8), 2373-2383. 

Kielland, K., McFarland, J.W., Ruess, R.W. & Olson, K. (2007). Rapid cycling of organic 
nitrogen in taiga forest ecosystems. Ecosystems 10(3), 360-368. 

Kinraide, T.B. (1981). Interamino acid inhibition of transport in higher-plants - Evidence for 
2 transport channels with ascertainable affinities for amino-acids. Plant Physiology 68(6), 
1327-1333. 

Komarova, N.Y., Thor, K., Gubler, A., Meier, S., Dietrich, D., Weichert, A., Grotemeyer, 
M.S., Tegeder, M. & Rentsch, D. (2008). AtPTR1 and AtPTR5 transport dipeptides in 
planta. Plant Physiology 148(2), 856-869. 

Lambers, H., Chapin, F.S. & Pons, T.L. (Eds.) (1998). Plant physiological ecology. New York: 
Springer-Verlag. 

Leadley, P.W., Reynolds, J.F. & Chapin, F.S. (1997). A model of nitrogen uptake by 
Eriophorum vaginatum roots in the field: Ecological implications. Ecological Monographs 
67(1), 1-22. 

Lee, Y.H., Foster, J., Chen, J., Voll, L.M., Weber, A.P.M. & Tegeder, M. (2007). AAP1 
transports uncharged amino acids into roots of Arabidopsis. Plant Journal 50(2), 305-319. 

Lipson, D. & Näsholm, T. (2001). The unexpected versatility of plants: organic nitrogen use 
and availability in terrestrial ecosystems. Oecologia 128(3), 305-316. 

Lipson, D.A., Raab, T.K., Schmidt, S.K. & Monson, R.K. (2001). An empirical model of 
amino acid transformations in an alpine soil. Soil Biology & Biochemistry 33(2), 189-198. 

Liu, X. & Bush, D.R. (2006). Expression and transcriptional regulation of amino acid 
transporters in plants. Amino Acids 30(2), 113-120. 

Miller, A.E. & Bowman, W.D. (2003). Alpine plants show species-level differences in the 
uptake of organic and inorganic nitrogen. Plant and Soil 250(2), 283-292. 

Miller, A.J. & Cramer, M.D. (2005). Root nitrogen acquisition and assimilation. Plant and 
Soil 274(1-2), 1-36. 

Nordin, A., Högberg, P. & Näsholm, T. (2001). Soil nitrogen form and plant nitrogen 
uptake along a boreal forest productivity gradient. Oecologia 129(1), 125-132. 

Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M. & Högberg, P. (1998). 
Boreal forest plants take up organic nitrogen. Nature 392(6679), 914-916. 

Näsholm, T., Huss-Danell, K. & Högberg, P. (2000). Uptake of organic nitrogen in the field 
by four agriculturally important plant species. Ecology 81(4), 1155-1161. 



 46 

Näsholm, T., Huss-Danell, K. & Högberg, P. (2001). Uptake of glycine by field grown 
wheat. New Phytologist 150(1), 59-63. 

Näsholm, T., Kielland, K. & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New 
Phytologist 182(1), 31-48. 

Näsholm, T. & Persson, J. (2001). Plant acquisition of organic nitrogen in boreal forests. 
Physiologia Plantarum 111(4), 419-426. 

Owen, A.G. & Jones, D.L. (2001). Competition for amino acids between wheat roots and 
rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil 
Biology & Biochemistry 33(4-5), 651-657. 

Paungfoo-Lonhienne, C., Lonhienne, T.G.A., Rentsch, D., Robinson, N., Christie, M., 
Webb, R.I., Gamage, H.K., Carroll, B.J., Schenk, P.M. & Schmidt, S. (2008). Plants can 
use protein as a nitrogen source without assistance from other organisms. Proceedings of the 
National Academy of Sciences of the United States of America 105(11), 4524-4529. 

Persson, J., Högberg, P., Ekblad, A., Högberg, M.N., Nordgren, A. & Näsholm, T. (2003). 
Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the 
field. Oecologia 137(2), 252-257. 

Persson, J. & Näsholm, T. (2001a). Amino acid uptake: a widespread ability among boreal 
forest plants. Ecology Letters 4(5), 434-438. 

Persson, J. & Näsholm, T. (2001b). A GC-MS method for determination of amino acid 
uptake by plants. Physiologia Plantarum 113(3), 352-358. 

Persson, J. & Näsholm, T. (2002). Regulation of amino acid uptake in conifers by exogenous 
and endogenous nitrogen. Planta 215(4), 639-644. 

Raab, T.K., Lipson, D.A. & Monson, R.K. (1996). Non-mycorrhizal uptake of amino acids 
by roots of the alpine sedge Kobresia myosuroides: Implications for the alpine nitrogen 
cycle. Oecologia 108(3), 488-494. 

Raab, T.K., Lipson, D.A. & Monson, R.K. (1999). Soil amino acid utilization among species 
of the Cyperaceae: Plant and soil processes. Ecology 80(7), 2408-2419. 

Rawat, S.R., Silim, S.N., Kronzucker, H.J., Siddiqi, M.Y. & Glass, A.D.M. (1999). 
AtAMT1 gene expression and NH4

+ uptake in roots of Arabidopsis thaliana: evidence for 
regulation by root glutamine levels. Plant Journal 19(2), 143-152. 

Read, D.J. (1991). Mycorrhizas in Ecosystems. Experientia 47(4), 376-391. 
Reeve, J.R., Smith, J.L., Carpenter-Boggs, L. & Reganold, J.P. (2008). Soil-based cycling 

and differential uptake of amino acids by three species of strawberry (Fragaria spp.) plants. 
Soil Biology & Biochemistry 40(10), 2547-2552. 

Reinhold, L. & Kaplan, A. (1984). Membrane-transport of sugars and amino-acids. Annual 
Review of Plant Physiology and Plant Molecular Biology 35, 45-83. 

Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J. & Papen, H. 
(2009). Nitrogen balance in forest soils: nutritional limitation of plants under climate 
change stresses. Plant Biology 11, 4-23. 

Rentsch, D., Schmidt, S. & Tegeder, M. (2007). Transporters for uptake and allocation of 
organic nitrogen compounds in plants. FEBS Letters 581(12), 2281-2289. 

Roberts, P. & Jones, D.L. (2008). Critical evaluation of methods for determining total 
protein in soil solution. Soil Biology & Biochemistry 40(6), 1485-1495. 



 47 

Rovira, P., Kurz-Besson, C., Hernandez, P., Couteaux, M.M. & Vallejo, V.R. (2008). 
Searching for an indicator of N evolution during organic matter decomposition based on 
amino acids behaviour: a study on litter layers of pine forests. Plant and Soil 307(1-2), 149-
166. 

Schimel, J.P. & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing 
paradigm. Ecology 85(3), 591-602. 

Schimel, J.P. & Chapin, F.S. (1996). Tundra plant uptake of amino acid and NH4

+ nitrogen 
in situ: Plants compete well for amino acid N. Ecology 77(7), 2142-2147. 

Schmidt, S. & Stewart, G.R. (1999). Glycine metabolism by plant roots and its occurrence in 
Australian plant communities. Australian Journal of Plant Physiology 26(3), 253-264. 

Schobert, C. & Komor, E. (1987). Amino-acid-uptake by Ricinus communis roots - 
Characterization and physiological significance. Plant Cell and Environment 10(6), 493-500. 

Schulten, H.R. & Schnitzer, M. (1997). The chemistry of soil organic nitrogen: a review. 
Biology and Fertility of Soils 26(1), 1-15. 

Schulze, W.X. (2005). Protein analysis in dissolved organic matter: What proteins from 
organic debris, soil leachate and surface water can tell us - a perspective. Biogeosciences 2(1), 
75-86. 

Soldal, T. & Nissen, P. (1978). Multiphasic uptake of amino acids by barley roots. Physiologia 
Plantarum 43, 181-188. 

Sowden, F.J., Chen, Y. & Schnitzer, M. (1977). Nitrogen distribution in soils formed under 
widely differing climatic conditions. Geochimica et Cosmochimica Acta 41(10), 1524-1526. 

Stevenson, F.J. (1982). Organic forms of nitrogen. In: Stevenson, F.J. (Ed.) Nitrogen in 
agricultural soils. pp. 67-122. Madison Wisconsin American Society of Agronomy; 
Agronomy 22 ). ISBN 0-89118-070-2. 

Stevenson, F.J. (Ed.) (1994). Humus chemistry: J Wiley New York. 
Svennerstam, H., Ganeteg, U., Bellini, C. & Näsholm, T. (2007). Comprehensive screening 

of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant 
uptake of amino acids. Plant Physiology 143(4), 1853-1860. 

Svennerstam, H., Ganeteg, U. & Näsholm, T. (2008). Root uptake of cationic amino acids 
by Arabidopsis depends on functional expression of amino acid permease. New Phytologist 
180(3), 620-630. 

Thornton, B. (2004). Inhibition of nitrate influx by glutamine in Lolium perenne depends 
upon the contribution of the HATS to the total influx. Journal of Experimental Botany 
55(397), 761-769. 

Thornton, B. & Robinson, D. (2005). Uptake and assimilation of nitrogen from solutions 
containing multiple N sources. Plant Cell and Environment 28(6), 813-821. 

Touraine, B. & Glass, A.D.M. (1997). NO3

- and ClO3

- fluxes in the chl1-5 mutant of 
Arabidopsis thaliana - Does the CHL1-5 gene encode a low-affinity NO3

- transporter? 
Plant Physiology 114(1), 137-144. 

Tsay, Y.F., Chiu, C.C., Tsai, C.B., Ho, C.H. & Hsu, P.K. (2007). Nitrate transporters and 
peptide transporters. FEBS Letters 581(12), 2290-2300. 

Wallenda, T. & Read, D.J. (1999). Kinetics of amino acid uptake by ectomycorrhizal roots. 
Plant Cell and Environment 22(2), 179-187. 



 48 

Weigelt, A., Bol, R. & Bardgett, R.D. (2005). Preferential uptake of soil nitrogen forms by 
grassland plant species. Oecologia 142(4), 627-635. 

Werdin-Pfisterer, N.R., Kielland, K. & Boone, R.D. (2009). Soil amino acid composition 
across a boreal forest successional sequence. Soil Biology & Biochemistry 41(6), 1210-1220. 

Vidmar, J.J., Zhuo, D., Siddiqi, M.Y., Schjoerring, J.K., Touraine, B. & Glass, A.D.M. 
(2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate 
influx by nitrogen pools in roots of barley. Plant Physiology 123(1), 307-318. 

Williams, L.E. & Miller, A.J. (2001). Transporters responsible for the uptake and partitioning 
of nitrogenous solutes. Annual Review of Plant Physiology and Plant Molecular Biology 52, 
659-688. 

Virtanen, A.I. & Linkola, H. (1946). Organic nitrogen compounds as nitrogen nutrition for 
higher plants. Nature 157, 515. 

Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., 
Schlesinger, W.H. & Tilman, G.D. (1997). Human alteration of the global nitrogen 
cycle: Sources and consequences. Ecological Applications 7(3), 737-750. 

Wright, D.E. (1962). Amino acid uptake by plant roots. Archives of Biochemistry and Biophysics 
97, 174-180. 

Young, J.L. & Aldag, R.W. (1982). Inorganic forms of nitrogen in soil. In: Stevenson, F.J. 
(Ed.) Nitrogen in agricultural soils. pp. 43-66. Madison Wisconsin American Society of 
Agronomy; Agronomy 22). ISBN 0-89118-070-2. 

Yu, Z., Zhang, Q., Kraus, T.E.C., Dahlgren, R.A., Anastasio, C. & Zasoski, R.J. (2002). 
Contribution of amino compounds to dissolved organic nitrogen in forest soils. 
Biogeochemistry 61(2), 173-198. 

 



 49 

Acknowledgements 
This has certainly not been a one woman show. This thesis and the projects behind it is a 
joint effort of several persons to whom I would like to express my deepest gratitude.  

 

First and foremost I would like to extend my gratitude to the directors and producers:  

Kerstin and Torgny, my super-supervisors! Thank you for introducing me to the exciting 
research of plant-soil interactions! This journey has, thanks to you, been a creative adventure. 
I have really appreciated to work with you, true nerds of plants! You complement each other 
perfectly. It's been fun. 

 

I would like to give my humble thanks to the Opponent and the Examining Committee 
for taking your time to read my thesis. 

 

My co-authors, thank you for great collaboration 

Henrik S, you sure are talkative but entertaining during tedious experiment preparations. 

Camila, lab work is so easy in your company. 

Mattias H, for excellent molecular analyses.  

Ulrika G, for your straight forward and warm attitude and for expanding my molecular 
knowledge. 

Erich I, for enormously efficient nitrate analysis. 

 

I have gotten so much invaluable support during these years from the technical staff at NJV 
and UPSC. Thank you Ann-Sofi, Margareta, Siv, Janne K, Marja-Leena and Lasse for 
help whenever needed with introducing me to HPLC, general lab behaviour, method 
development, experiments, massive autoclaving and so much more, always in a very nice 
way. Britt- Inger, for all administrative support. Thank you, Ingemar and Stefan, for 
technical support with my computer. 

 

I would like to thank, Jun Yu, Kristi Kuljus and Bo Ranneby for efficient statistical 
advices and rewarding statistical discussions.  

 

Ines B, thank you for your commitment during an unusually dry and crappy season.  



 50 

 

Former and present members of the N-group (Åsa, Oskar, Henrik, Lena, Camila, 
Mattias, Ulrika, Erich, Linda G, Jonas, Takahide, Annika, Margareta, Ann, et al.). 
Thanks for great collaborations, rewarding discussions, great professional and personal 
support. 

 

My thanks to all you fantastic people I met during the way, present and former employees at 
NJV and UPSC for all work related and personal discussions. My special appreciation to 
Ioana, Steve, Olivier, Jonathan, Ilka, Ann-Sofi, Cissi, Georg, Anja, Osei, all PhD 
colleagues and Post-Docs, which are too many to mention but you know who your are. 

 

During time water passes under the bridge meanwhile important people pass over it. I have 
met some really good friends during these years. Words are limiting but:  

Sara AG, for bringing joy to running, for the discussions, and for your nerdiness and 
thoughtfulness.  

Aurora, for your spirit and for making me laugh out loud. 

Janne (and your wonderful Jenny), thank you for the music…all conversations, chemistry 
input and computer support. 

Junko, you are so much fun. 

Annika J, Sara VP, Anna K, my sisters in arms, thank you for the occasional reality check. 

Karin and Henrik, I still think the common swift is the coolest bird ever. You two are rare 
birds. 

 

All friends on the outside, 

The best ex-neighbours, Hanna and Pelle, for spontaneous visits and relaxing atmosphere.  

Ellinor and Patrik, for your enormous hospitality. 

Ann-Sophie and Roger, my long distance science supporters. 

Charlotta, who is always there. 

Mia and Tobbe, for being sweet and enthusiastic. 

Berika and Lina, for ever lasting friendship. 

Daniel and Helen, I miss beer in Majorna. 

Helle! Min Helle! "Det är inte så noga…" 

 

Annika, Hasse, Mimmi and Julle. You are the best in-laws one could ever wish for.  

Mamma och Pappa, Evelina och Petter. Tack för allt! Utan er så vore jag inte jag! Tack 
för att ni bryr er fastän ni inte alltid förstår! 

 

All you need is love… 

Frasse, I love you around the world and back again.  

Ingrid, oändligt är vårt stora äventyr!  



 51 

The language was corrected by John Blackwell at Sees-editing Ltd, UK. 
My position as a PhD student was funded by FORMAS, grant to KHD.



 52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Det mesta blir väl inte som man tänkt sig och ingen annan kan man skylla på. 
Och baken har man bakåt fast man vänt sig, å knappast blir de nå bättre. 

Allan Edwall, Förhoppning 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


