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Evasion of CO2 from Streams – Quantifying a Carbon Component of 
the Aquatic Conduit in the Boreal Landscape  

Abstract 
Lateral export of carbon (C) from soils to running waters is a persistent pathway 

for C with terrestrial origin. This “aquatic conduit” might be especially important 
in boreal regions where a significant part of the global C stock is stored in the soil. 
Even though the awareness of the fate of terrestrially derived C is increasing in 
regional and global C budgets, the scarcity of data on the contribution of streams is 
widely acknowledged. In particular, the evasion (degassing) of gaseous C (i.e. CO2 
and CH4) from the water surface of streams requires better characterization. This 
thesis aims to quantify the evasion of CO2 from boreal streams within the 67 km2 
Krycklan catchment, and explore the factors controlling this diffuse flux. 

All streams in the Krycklan catchment were consistently supersaturated in CO2 
and were hence a source for atmospheric CO2 all year around. The source for this 
supersaturation of CO2 was to a great extent explained by the export of respired C 
from the catchment soils. This was shown by exploring the export of dissolved 
inorganic carbon (DIC) across the soil/stream/atmosphere interfaces in a headwater 
catchment. The study also found that CO2 evasion from the stream surface is a 
rapid process, and that much of the DIC leaving the soils is returned to the 
atmosphere as CO2 before leaving the headwaters. Evasion of CO2 is dependent on 
the water-atmosphere concentration gradient, but also the gas exchange ability 
across the water-atmosphere interface (the gas transfer coefficient). The 
spatiotemporal variability of the gas transfer coefficient for carbon dioxide (KCO2) 
was found to be large, but the slope of the stream can be used to predict the spatial 
component of this variability. The positive relationship between KCO2 and stream 
section steepness was used to determine the spatial distribution of gas exchange 
ability for the entire stream network of forested Sweden. By combining 
concentration measurements and field-determined relationships with a high 
resolution digital elevation model (DEM) we were able to model the CO2 evasion 
for each grid-cell of stream in the Krycklan catchment. Evasion of CO2 from the 
entire stream network constituted a major component (<69 %) of the entire aquatic 
C flux. This study highlights the importance of including CO2 evasion from 
streams in estimates of the aquatic conduit for carbon in boreal regions.  
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1. Introduction 

1.1. The boreal landscape and its role in the global carbon cycle 
 
From a distance, the boreal zone might seem rather simple and uniform, but 
from an ecosystem perspective the landscape is a complex mosaic of forest, 
peatlands and lakes. The landscape stores a significant part of the global 
carbon (C) stock in soils and vegetation (Pregitzer & Euskirchen, 2004; 
Gorham, 1991). Furthermore, boreal forests and peatlands are seen as 
important sinks for atmospheric carbon dioxide (CO2) on a global scale 
(IPCC, 2007). The exchange of C between forest ecosystems and the 
atmosphere is however highly variable both on a spatial (Valentini et al., 
2000) and a temporal scale (Krishnan et al., 2008; Zha et al., 2004). A 
Swedish study emphasized that the inter-annual variability in Net 
Ecosystem Productivity (NEP) is large and that the same forest stand may 
act as a net sink during some years and a net source during other years 

(Lindroth et al., 2008). This great variability in NEP in combination with 
the fact that mature forests in the boreal zone can be close to equilibrium 
with the atmosphere in terms of CO2 exchange (Lagergren et al., 2008; 
Lindroth et al., 1998), means that the export of terrestrially derived C to 
aquatic ecosystems is a significant component in the sink/source 
relationship of the boreal landscape.  
 
Similar findings of large spatial and temporal variability of the NEP in 
forested systems have been found for Net Ecosystem Exchange (NEE) in 
different unmanaged peatland systems. Despite a great variability in NEE, 
northern peatlands are concluded to generally be net sinks for atmospheric 
CO2 (Lund et al., 2010). However, the strength of this C sink component 
has been significantly altered (-30-(-)50%) when including fluvial export of 
C in the peatland C budget estimates (Dinsmore et al., 2010; Nilsson et al., 
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2008; Roulet et al., 2007). Corresponding considerations of the potential 
importance of fluvial C export for C budgets of forested biomes are 
although rare in the literature. 

 
 
1.2. The importance of aquatic systems in the global carbon budget 
 
The importance of inland waters for the global terrestrial C cycle is 
becoming increasingly apparent and the most recent estimate of global C 
export from terrestrial systems via the “aquatic conduit” is 2.9 Gt C yr-1 

(Tranvik et al., 2009). Thus, the size of the aquatic C export is of the same 
magnitude as the global NEP, estimated as 2.0 Gt C yr-1 (Randerson et al., 
2002). About 50% of the C leaving terrestrial systems is concluded to be 
transferred back to the atmosphere (evasion) from the water surface of 
inland waters before reaching the sea. In addition, about 20% of the C is 
assumed to be buried in the sediments of lakes and impoundments resulting 
in only ~30% of the terrestrial C exported via the aquatic conduit actually 
reaching the sea (Tranvik et al., 2009). However, estimates of the terrestrial 
C export via the aquatic conduit like this are to a large degree based on how 
much C reaches the sea and estimates of lake C processes (sedimentation 
and evasion). The importance of stream systems for C export is poorly 
characterized, especially at large scales, and estimates are associated with a 
large degree of uncertainty. 
 
 
1.3. Why study stream systems? 
 
The areal coverage of lakes, ponds and impoundments has been estimated 
to cover 4.6 million km2 or about 3% of the earth´s “land” surface 
(Downing et al., 2006). This number was almost twice as high as previous 
estimates and has contributed to the increased awareness the role inland 
waters play in the global C cycle (Tranvik et al., 2009; Cole et al., 2007). 
Comparable knowledge concerning the global area covered by running 
waters is however very limited and often highlighted as a potential source 
of error in global C budget estimates (Battin et al., 2008; Cole et al., 2007). 
Furthermore, much of the scientific work on aquatic systems and their role 
in the global C cycle has been focused on lakes, while much less attention 
has been given to running waters. One exception is a study by Battin et al. 
(2008) that highlighted the importance of fluvial networks and their role in 
the global C cycle. Their study emphasized that metabolism of carbon with 
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terrestrial origin in fluvial networks (streams and rivers) was responsible 
for a large amount of the CO2 being outgassed to the atmosphere. They 
estimated the vertical C flux from fluvial networks to 0.95 and 0.50 Gt C 
yr-1 for global respiration and global net heterotrophy respectively. 
However, their estimate only considered in-stream processed organic 
carbon. Soil and groundwater inputs of DIC therefore have to be added to 
this estimate in order to give an accurate estimate of all CO2 emissions 
from fluvial networks. Humborg et al. (2010) estimated the CO2 efflux 
from the entire Swedish aquatic conduit (including streams, rivers and 
lakes) to be 2.58 Tg C yr-1. Their estimate was based solely on modelling of 
both the degree of supersaturation and gas transfer velocities. They 
concluded that streams, despite their low area coverage, were responsible 
for a large part of the C exchange (27%; stream order 1-4) between inland 
waters and the atmosphere. Furthermore, they estimated that terrestrial 
respiration was responsible for 50% of the vertical CO2 flux for the entire 
aquatic conduit.  
 
Small streams often comprise the majority of the length of a fluvial 
network in a given area. For instance, small streams (catchment areas < 
15km2) comprise 90% of the total stream and river length in Sweden 
(Bishop et al., 2008). These low order streams form the capillary network 
in the landscape and provide the first possibility for direct gas exchange 
between water leaving the soil and the atmosphere. In addition, such low 
order streams in forested and peatland systems in the boreal region are 
often highly supersaturated in CO2 with respect to the atmosphere 
(Koprivnjak et al., 2010; Rantakari et al., 2010; Nilsson et al., 2008). This 
supersaturation has been concluded for peatland systems to be a result of 
the close hydrochemical connectivity between the soil and the adjacent 
stream (Dinsmore & Billett, 2008; Hope et al., 2004). Furthermore, the 
evasion of CO2 from low order stream systems has been found to be a rapid 
process (a matter of hours) and the supersaturation of CO2 typically 
decreases downstream along the stream network (Temnerud, 2005; Dawson 
et al., 2004; 1995). These stream features make them potentially important 
in the calculation of landscape C budgets. Although the awareness of 
stream systems and their role in biome specific C balances is increasing, the 
knowledge gap at regional and global scales is still large. 
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1.4. Sources of DIC in streams 
 
Dissolved inorganic carbon (DIC) (including HCO3

-, CO3
2- and CO2) in 

streams can be derived from both biogenic, geogenic and atmospheric 
sources (Figure 1). The biogenic contributions are groundwater inputs of 
CO2 derived from respiration processes in the soil, in-stream degradation of 
C through microbial processes and photo-oxidation. The geogenic sources 
are dissolution of carbonate and weathering of silicate minerals in soils and 
underlying bedrock. In addition, there is a potential atmospheric source 
(atmospheric draw-down or invasion) in streams under-saturated in CO2 
(Palmer et al., 2001; Atekwana & Krishnamurthy, 1998). The stream DIC 
concentration has been found to be strongly influenced by the degree of 
hydrochemical connectivity between the riparian soil and the adjacent 
stream in peatland systems (Dawson et al., 2004; Hope et al., 2004), a 
pattern also seen in boreal forested systems (Paper II). The contribution of 
in-stream processes to the DIC concentration is highly dependent upon 
catchment-specific characteristics but is generally suggested to increase 
downstream along the stream network. In-stream processing of C is 
considered to be of minor influence for DIC in boreal low-order streams 
(Paper II). Controlling factors such as water residence time, stream 
gradient, water temperature, light conditions and nutrient availability 
support this statement. However, in-stream metabolism for example is 
known to be an important component in the global C cycle (Battin et al., 
2008) and will thus significantly affect the DIC/CO2 concentration in larger 
streams and rivers of various biomes (Dawson et al., 2009; McTammany et 
al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Processes controlling stream DIC concentrations. Triangles indicate groundwater 
level. Revised version of an original figure by Atekwana and Krishnamurthy (1998). 



 15 

1.5. Factors controlling CO2 evasion 
 
Evasion of a given gas across the water-atmosphere interface requires a 
concentration difference. A higher concentration of the gas in the water 
compared to the air result in a concentration gradient driving diffusion 
across the interface.  The rate of diffusion is controlled by the partial 
pressure of the individual gas and its exchange ability at the water-
atmosphere interface (K) (Macintyre et al., 1995). The main driver for 
variability in gas exchange in open water systems (oceans, estuaries and 
lakes) besides the water-atmosphere gas concentration gradient is often 
concluded to be wind speed over the water surface (Borges et al., 2004; 
Wanninkhof, 1992). The corresponding main driver for streams is instead 
suggested to be water turbulence created by variations in discharge and 
stream morphology (Hope et al., 2001; Wanninkhof et al., 1990; Tsivoglou 
& Neal, 1976). In the absence of a turbulent water surface, streams can 
show moderate evasion rates although being highly CO2 supersaturated. 
Such findings have been made for streams and ponds draining the Mer Bleu 
peatland in Canada (Billett & Moore, 2008). Furthermore, turbulence 
conditions are often very variable along a stream, thus the evasion can vary 
greatly at a small scale with local hot-spots occurring along the stream 
network. Hence, it is important to have a good understanding of the small 
scale variability in CO2 exchange at the water surface before making 
accurate regional estimates of CO2 evasion fluxes from running waters. 
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2. Objectives 

The overall aim of this thesis is to improve the understanding of the 
concentration dynamics and fluxes of dissolved inorganic carbon (DIC) in 
boreal streams, especially the evasion of CO2 from the stream surface. The 
thesis also investigates the potential importance of the two-dimensional 
flux of inorganic carbon (both laterally as DIC and vertically as CO2) for 
the aquatic conduit in the landscape C budget. The paper specific objectives 
were: 
 

I. Document spatial and temporal patterns of DIC and CO2 
concentrations in a boreal stream network and indentify likely 
causes for those patterns 
 

II. Determine the lateral export of DIC from soils of a boreal 
coniferous forest to a first order stream and estimate the 
partitioning of the DIC into CO2 evasion from the stream surface 
and the DIC exported downstream 
 

III. Quantify spatial and temporal variability in the gas transfer 
coefficient of CO2 (KCO2) within a boreal stream network and 
explore relationships of KCO2 to physical parameters 
 

IV. Estimate the evasion of CO2 from streams within a boreal 
catchment and relate it to the downstream export of DOC and DIC 
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3. Study site 

All studies included in this thesis (except the synoptic samplings described 
in 4.4 and 5.6) were conducted in the upper part of the Krycklan catchment, 
(64° 14´N, 19° 46´E) situated ca 60 km north-west of Umeå, northern 
Sweden (Figure 2). The area is well documented since it is a part of the 
Svartberget, Long Term Ecological Research (LTER), originally 
established in 1923 (http://vfp.esf.slu.se). Hydrological and biogeochemical 
research has been performed in one of the subcatchments, the 0.5 km2 
Nyänget catchment, for more than 30 years (Köhler et al., 2008; Bishop et 
al., 1990). Starting in 2002, research in the area expanded to cover the 
upper 67 km2 catchment of the river Krycklan and the Krycklan Catchment 
Study (KCS) was born (Buffam, 2007). A great number of scientific 
papers, reports, doctoral and master thesis have been published since then 
and they all contribute to the Krycklan catchment being the most 
investigated watershed in Sweden today regards to hydrological, 
biogeochemical and stream ecological research. The stream network is 
typical in many regards for forested catchments in Scandinavia. The 
average length of the growing season is 152 days (1997-2007) and snow 
covers the ground from the end of October until the end of April. Annual 
mean precipitation is 600 mm (about 35% falls as snow) and ~50% of this 
is lost as runoff. The annual daily mean temperature is 1.3°C (Ottosson 
Löfvenius et al., 2003). Elevation range in the catchment is 126 to 369 
m.a.s.l. The catchment is mainly forested with Norway spruce (Picea abies, 
L) and Scots pine (Pinus sylvestris, L), with deciduous trees commonly 
found in the riparian zone of 3rd and 4th order streams. The forest soils are 
mainly well-developed iron podzols with organic rich soils commonly 
found in the near stream zone in the upper parts of the catchment (1st and 
2nd order streams). At lower elevation below the highest postglacial 
coastline, glaciofluvial sediments are more commonly found with a large 
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proportion of silt deposits formed by a postglacial river delta (Ågren et al., 
2007). 

 
Data from 17 stream sites ranging in subcatchment area from 0.03-67 km2 
are presented in this thesis (Figure 2 and Table 1). The main land cover 
elements in the subcatchments are forest and peatland. Stream order ranges 
from 1st to 4th order with a typical annual pH range of 3.7-6.3 in headwaters 
and 5.7-7.4 in 4th order streams. Typical 1st order stream carbon 
concentrations are: dissolved organic carbon (DOC), 5.0-40.0 mg L-1, 
dissolved inorganic carbon (DIC), 0.5-25.0 mg L-1, and carbon dioxide 
carbon (CO2-C), 0.5-17.0 mg L-1. Respective concentration ranges in 4th 
order streams are 5.0-15.0 mg L-1, 1.0-5.0 mg L-1 and 0.5-2.0 mg L-1. 
Furthermore, lowest pH and highest DOC, DIC and CO2-C concentrations 
are seen in streams characterized by a high proportion of peatland (30-75%) 
in the catchment (Wallin et al., 2010; Buffam et al., 2007). More detailed 
descriptions of the sites and stream chemistry dynamics can be found in 
Buffam (2007) and Ågren et al. (2007). 
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Figure 2. The Krycklan catchment with the stream network and location of the 17 stream 

sites presented in this thesis (black dots). Lakes are in dark grey and peatlands in light grey. 
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4. Methods 

4.1. Field sampling 
 
Papers I and IV are based on the regular stream sampling of 14 or 13 
stream sites respectively, streams which are all included in the KCS 
program (Buffam et al., 2007; Ågren et al., 2007). The streams were 
sampled biweekly to monthly and more intensively during the spring floods 
from 2006 to 2009 for a total of 104 occasions. Paper II is based on 
measurements of DIC export from the riparian zone into an adjacent 
headwater stream, combined with estimates of the downstream and vertical 
fluxes of DIC and CO2. Soil and stream DIC concentrations were measured 
during one year 2003/2004. Measurements of gas exchange ability of the 
headwater stream using tracer gas injections (supporting information paper 
II) were carried out during 2006-2007. Paper III is based on tracer gas 
injections conducted in 14 stream reaches of various stream orders and 
during different seasons in 2006-2007. In addition to papers I-IV, δ13C-DIC 
data of the Krycklan streams and synoptic samplings of DIC and pCO2 
across Sweden are presented in this thesis (described in 4.3. and 4.4). 
 
   
4.2. Method used for determining DIC and pCO2 
 
An acidified headspace method (AHS) has been used in all papers to 
measure DIC in the stream water. DIC, CO2-C concentrations and pCO2 
were calculated from GC-determined headspace pCO2 using temperature-
dependent equations for the carbonate equilibrium (Gelbrecht et al., 1998) 
and Henry’s Law (Weiss, 1974), together with measured stream water pH 
and temperature. The methodology and required calculations are described 
in detail in paper I. The method is further evaluated in terms of accuracy 
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and sample storage effects by Wallin et al. (Manuscript)(Figure 3A and B). 
A well -direct headspace method (DHS) (Jonsson et al., 2003; Kelly et al., 
2001; Cole et al., 1994; Hesslein et al., 1991) was used as a reference. Both 
the field and lab study showed good agreement between the AHS and DHS 
methods in terms of pCO2 (Figure 3A). The sample storage test showed that 
despite lowering the pH to ~2 and keeping the samples dark and cold (5°C) 
prior to analysis, microbial processes affect the concentration of inorganic 
carbon in the sample bottle (Figure 3B). The mean increase in DIC 
concentration (%) due to storage was well approximated with a logarithmic 
function indicating a substrate limitation. The results also showed that GC-
analysis should be done within a few days after sampling. 
 

Figure 3. A) Comparing results of pCO2 determination between the direct headspace 

method (DHS) (x-axis) and the acidified headspace method (AHS) (y-axis). B) Percent 

increase in DIC concentration as a function of storage time (months) of the acidified 

headspace method (AHS). Average value of three different stream sites is presented, with 

error bars showing SD. 

 
 
4.3. Sampling and analysis of δ13C-DIC 
 
In order to investigate the sources of DIC within the Krycklan catchment, 
determination of the stable isotopic composition, δ13C-DIC, was made. The 
stable isotopic composition of C is defined as the ratio between 13C and 12C 
related to an international carbonate standard (in this study the Pee Dee 
Belemite), and given as the per mil (‰) deviation from the standard 
(Equation 1).  
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C                  (1) 

 
Different DIC sources have specific isotopic signatures making analysis of 
isotopic composition a useful tool for tracing the C origin. Distinct DIC 
sources are (with typical δ13C values in parenthesis): atmospheric C (-8 ‰), 
carbonate bedrock C (0 ‰) and respired DOC-C (-28 ‰) (Parker et al., 
2010; Billett et al., 2007; Finlay, 2003). Stream water samples for analysis 
of δ13C-DIC were collected from 15 stream sites at two or three occasions 
during 2006 (in June after spring flood, in August at an extreme low flow 
situation and in November at a moderate flow situation). Six stream sites 
were not sampled during the August occasion due to dry stream beds. All 
samples were collected in 12 ml gas tight exetainer tubes, which were 
evacuated and pre-filled with nitrogen at atmospheric pressure before 
sampling. The water samples were acidified prior to analysis and analyzed 
using IRMS technique (Europa Scientific Ltd, ANCA TG system) at the 
soil chemistry laboratory SLU, Umeå, Sweden.  
 
 
4.4. CO2 supersaturation of streams across Sweden 
 
In order to evaluate how representative the studies conducted in the 
Krycklan catchment (papers I-IV) are in relation to the entire forested 
landscape of Sweden, we sampled low order streams  in three different 
forested regions (n=~100 per region) along a latitude gradient across 
Sweden. A variety of chemical variables were assessed, including DIC, 
TOC and pH. Synoptic sampling was performed: 
 

1) during one day within the Krycklan catchment in July 2007, where 
every stream junction was sampled for a total of 103 stream sites 
ranging from stream order 1-4. 

2) 108 selected first order stream sites were sampled in the catchment 
of Dalälven during two weeks in late September 2009 at a stable 
discharge condition. 

3) 94 selected first order stream sites were sampled along the west-
coast of Sweden (Västkusten) in the Viskan, Ätran, Nissan and 
Lagan catchments during one week in early June 2010 at a stable 
discharge condition.  
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The stream sites for sampling surveys 2 and 3 were statistically 
representative sites and were randomly selected. The conditions for the site 
selection were that the upstream stream length of the sampling site was 
<2500 m and that the catchment did not include urban areas or more than 
5% agricultural land. 
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5. Results and Discussion 

5.1. DIC dynamics in a boreal stream network (paper I) 
 
This study showed that all stream sites within the 4th order catchment of 
Krycklan were consistently supersaturated in CO2 with respect to the 
atmosphere (Figure 4). Thus they are a constant source of atmospheric CO2 
due to vertical evasion. The ranges in DIC and pCO2 are similar to findings 
made for boreal systems in eastern Finland (Rantakari et al., 2010) and in 
Ontario, Canada (Koprivnjak et al., 2010). The temporal variability in DIC 
concentration was to a great extent controlled by variability in discharge. 
However, the variability in CO2 was also dependent on the pH range of the 
streams. The clear gradient in pH along the stream network and the 
hydrological control of acidity in the Krycklan catchment influenced the 
variability in CO2. The greatest dilution of CO2 with increased stream 
discharge was seen in the low-pH headwater sites. The variability was less 
in the larger streams where the increase in the CO2 proportion of DIC at 
increased discharge caused by a lowering of the pH counteracted the 
dilution of CO2. The low temporal CO2 variability in the larger streams was 
controlled more by temperature. This emphasizes that headwaters are more 
likely to be variable than larger streams in their role as source for 
atmospheric CO2. 
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Figure 4. Median annual DIC concentration (black bar) and part as CO2-C (white bar) for 14 

stream sites within the Krycklan catchment. Error bars show coefficient of variation (CV). 

The hatched line indicates atmospheric equilibrium at a water temperature of 5°C and 

assuming an atmospheric concentration of 380 µatm.  

 
 
Peatland coverage was the most important factor for controlling the spatial 
variability in the landscape stream concentrations of DIC and CO2, as well 
as when estimating area-specific flux of DIC. The sites with a large 
proportion of peatland in their catchment by far exceeded the other sites in 
terms of annual median DIC and CO2 concentration. Nearness to an 
extended peatland may also be an important contributing factor to spatial 
variability since the elevated signal of CO2 in the stream disappeared a 
short distance downstream due to rapid evasion of CO2. 
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5.2. Connecting soil with stream and the fate of DIC entering a 
headwater stream (paper II) 
 
The aim of this investigation was to determine the annual lateral export of 
DIC from soils in a Swedish boreal coniferous forest to a first order stream 
and to partition this into CO2 evasion from the stream surface and 
downstream export of DIC. The annual DIC export from the soil to the 
stream was estimated to be 3.2 g C m-2 yr-1 (Table 2). Up to 90% of this 
DIC was found to be evaded as CO2 from the stream surface within a few 
hundred meters downstream. Furthermore, there was a strong positive 
correlation between the DIC concentration found in the riparian soil and 
DIC found in the adjacent stream (R2 = 0.96), suggesting a strong 
hydrochemical connectivity. Similar findings of strong soil-stream linkages 
for CO2 have been made for peatland systems (Dinsmore et al., 2009; Hope 
et al., 2004). 
 
 

Table 2. Estimated annual and seasonal DIC export (± SD) from soil ground water to 

the stream and its partitioning into DIC stream export and CO2 evasion (values in 

parenthesis represents export assuming daily DIC concentrations represented by the 

25% and 75% quartiles, respectively). 

 

Time 

period 

Days 

# 

Soil DIC Export 

(g C m-2) 

Stream DIC Export 

(g C m-2) 

Stream CO2 evasion 

(g C m-2) 

Annual 365 3.2 ±0.1 (2.9/4.1) 0.9 ±0.01 (0.7/1.2) 2.9 ±0.1 (2.0/3.7) 

Winter 168 0.5 ±0.02 (0.4/0.6) 0.1 ±0.002 (0.1/0.2) 0.7 ±0.01 (0.6/1.1) 

Spring 56 1.3 ±0.07 (1.2/1.6) 0.3 ±0.01 (0.3/0.5) 0.8 ±0.08 (0.6/1.1) 

Summer 99 0.7 ±0.04 (0.7/1.0) 0.3 ±0.01 (0.2/0.3) 0.9 ±0.05 (0.4/0.8) 

Fall 42 0.8 ±0.04 (0.6/0.8) 0.2 ±0.004 (0.1/0.2) 0.5 ±0.04 (0.4/0.7) 

Growing 

season 
160 2.1 ±0.07 (2.0/2.8) 0.6 ±0.01 (0.5/0.8) 1.8 ±0.1 (1.1/2.0) 

Non-growing 

season 
205 1.1 ±0.02 (0.8/1.2) 0.3 ±0.004 (0.3/0.9) 1.1 ±0.03 (0.9/1.7) 
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In addition, temporal dynamics of the CO2 evasion from the stream 
correlated positively with the soil DIC export (R2 = 0.74). This suggested 
that the CO2 evasion was primarily driven by soil DIC export, with in-
stream processes playing a minor role. Based on our results, we concluded 
that current budget estimates of lateral DIC export from soils to aquatic 
conduits need to be revised because they do not account for prevailing 
conditions in headwater steams. Data from headwater systems is rare, so 
any quantification of lateral stream C export and CO2 emissions from 
freshwater systems must include headwater streams as well the lower parts 
of the aquatic conduit. 
 
 
5.3. Variability in the water-atmosphere exchange ability of CO2 across a 
boreal stream network (paper III) 
 
We concluded in this study that the spatiotemporal variability of the gas 
transfer coefficient for carbon dioxide (KCO2) is large in boreal streams, but 
that the slope and the morphology of the stream can be used to predict the 
spatial component of this variability (Figure 5). This finding is supported 
by studies that have shown that topographic slope is one of the primary 
hydraulic properties that influence reaeration in streams (Gualtieri et al., 
2002; Tsivoglou & Neal, 1976; Bennett & Rathbun, 1972). Although the 
influence of stream slope on reaeration is well described in the literature it 
is poorly described in studies of KCO2 and CO2 exchange. Furthermore, for 
specific stream sections, the slope of the stream was also correlated to the 
size of the temporal variability in KCO2, with steeper stream sections 
showing larger variability. Large-scale response functions for KCO2 based 
solely on discharge are inappropriate since the patterns between these 
variables appear to be highly site specific. Furthermore, we found that 
variability in KCO2 is the main determinant of between site variations in CO2 
evasion from boreal streams. 
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Figure 5. Measured versus MLR-modelled values of median gas transfer coefficient of CO2 

(KCO2) normalized to 20 °C from the 14 studied stream reaches. Predictive variables were 

slope of the stream reach (%) and the ratio, median stream width over median stream depth 

(-). Confidence interval is given by grey hatched lines and mean value of the medians is 

given in black hatched line.  

 
 
Even though we did not find an influence of stream order on KC02 in our 
field study, the pattern for the majority (>95%) of the Swedish forested 
boreal/nemoral stream network (stream order 1-4) was different with a 
clear trend in lower median KCO2 in higher stream orders. This finding is in 
agreement with a study of the entire stream network of Sweden (Humborg 
et al., 2010). However, the trend of decreasing KCO2 at higher stream orders 
was due to the prevalence of low order streams with a higher slope, rather 
than an issue related to the size of the stream per se. Furthermore, this 
study showed that accurate landscape scale estimates of the evasion fluxes 
of CO2 require a good understanding of the controls on gas exchange at the 
water surface. Without this information estimates of landscape-scale 
evasion loss from lotic systems will be associated with a very high degree 
of uncertainty. 
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5.4. Evasion of CO2 from boreal streams – a major carbon component of 
the aquatic conduit (paper IV) 
 
By combining concentration measurements and field determined 
relationships (paper I & III) with a high resolution digital elevation model 
(DEM) (Grabs, 2010), we were able to calculate the CO2 evasion from the 
entire stream network of the Krycklan catchment in detail. Evasion of CO2 
from the stream surface was hypothesized as a major carbon component of 
the aquatic conduit due to the degree of CO2 supersaturation observed in 
paper I. The annual evasion of CO2 from the Krycklan catchment was 10.4 
g C m-2 yr-1,which corresponded to 69 % of the entire aquatic C flux (lateral 
as DIC, DOC and vertical as CO2) (Figure 6). The 1st and 2nd order streams 
contributed to 50 % of the entire CO2 evasion from the stream network. 
Although the CO2 evasion flux was associated with a relatively higher 
uncertainty compared to the lateral DOC and DIC flux (mainly derived 
from uncertainty of the length and area of the stream network), it was clear 
that it constituted a major component of the entire aquatic C flux. This was 
in agreement with findings of streams draining 1st order boreal catchments 
in Eastern Finland (Rantakari et al., 2010) and streams draining peatland 
systems in Scotland (Dinsmore et al., 2010; Hope et al., 2001). This study 
highlighted the importance of including evasion of CO2 from boreal 
streams in landscape C budgets at various scales. It also indicated that 
previous estimates of C export from soils to surface waters might have been 
significantly underestimated, since a major C component is lost to the 
atmosphere shortly after crossing the soil-stream interface. 
 

 
Figure 6. Contribution of the various C species to the entire aquatic C flux from the 
Krycklan catchment, including lateral flux of DOC, DIC and vertical flux of CO2 (left 
graph). Contribution of the different stream orders to the CO2 evasion (right graph). 



 31 

5.5. Isotopic composition of DIC within the Krycklan stream network 
 
The streams within the Krycklan catchment showed a spatial variability in 
the isotopic composition of DIC (δ13C-DIC) ranging from -10.8 to -24.9 ‰ 
and with site-specific median range from -13.5 to -24.4 ‰. The majority of 
the streams had a median δ13C-DIC between -18 and -22 ‰, suggesting that 
most of the DIC is derived from respired organic matter in the soil or from 
in-stream processing of DOC.  Both catchment area (Figure 7A) and 
peatland coverage in the catchment (Figure 7B) came out as important 
explanatory variables for the δ13C-DIC, although exclusion of the high 
peatland site (site 3, 76 % peatland) in the regression (Figure 7B) made the 
relationship statistically insignificant. A heavier δ13C-DIC with increased 
distance downstream is in agreement with findings made in river systems in 
Michigan, USA (Atekwana & Krishnamurthy, 1998), in small streams in 
California, USA (Finlay, 2003)  and in a small peatland stream in North 
East Scotland (Palmer et al., 2001). The enrichment in δ13C-DIC with 
increased stream size can be explained by a number of potential causes. 
The influence of CO2 being lost to the atmosphere by evasion along the 
stream network would explain the pattern with enrichment in δ13C-DIC 
since 12C is evaded faster than 13C (Parker et al., 2010; Finlay, 2003). 

 

 
Figure 7.  Mean δ13CDIC as a function of catchment area (A) and percentage peatland in the 

catchment (B) of 15 streams within the Krycklan catchment. Data are based on two or three 

sampling occasions (June, August and November). 
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As discussed in Buffam et al. (2008), in the lower parts of the Krycklan 
catchment a greater contribution of deep groundwater, rich in base cations, 
is affecting the chemistry of the stream water. This could suggest a larger 
influence of DIC with a geogenic source, although the weathering rates of 
carbonate containing bedrock in the catchment are concluded to be low 
(Klaminder et al., in press). The strong pH gradient in the catchment from 
acidic headwaters (pH ~4) to more circumneutral 4th order streams (pH 
~6.5) could also explain the enrichment in δ13C-DIC, since a much higher 
proportion of the DIC pool will be in the form of HCO3

- in the larger 
streams. Such shift in the distribution of the DIC species can cause a large 
enrichment in δ13C-DIC (<10 ‰) (Waldron et al., 2007; Finlay, 2003). A 
draw-down or mixing of atmospheric CO2 with a typical isotopic 
composition of -7-(-)8 ‰ could also potentially cause the pattern, but since 
the entire stream network is constantly supersaturated in CO2 (paper I), this 
is unlikely to have an significant influence 
 

 
5.6. DIC and pCO2 in streams along a latitude gradient across Sweden 
 
This study showed that all sampled streams (n = 305) across Sweden were 
supersaturated in CO2 and hence a source for atmospheric CO2 (Table 3). 
The full range in pCO2 (744-36229 µatm) was found in the Krycklan 
catchment. The regions were sampled during different parts of the growing-
season, thus observed geographical patterns and trends should be 
interpreted with caution. However, the data indicates that the 
supersaturation of the streams was much higher in the Västkusten region 
(median pCO2 = 4821 µatm). Determining whether this pattern has a 
biogeochemical explanation or is just an artefact resulting from the 
seasonal difference in time of sampling, requires further research. Since pH 
is controlling the chemical equilibrium and speciation of the DIC 
components (Stumm & Morgan, 1996), the lower pH in the streams of the 
Västkusten region also leads to a higher proportion of the DIC being in the 
form of CO2. Furthermore, a higher pH in Krycklan compared to the 
Dalälven streams explained why the supersaturation was lower despite 
having a higher DIC concentration. The pH decrease along the north-south 
latitude gradient observed in this study reflects the historical influence of 
acid deposition, and the same pH-gradient has been documented for forest 
soils in Sweden (Karltun, 1994). 
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6. Conclusions and future perspectives 

This thesis concludes that: 

 All streams within the Krycklan catchment are constantly 
supersaturated in CO2 and hence a source for atmospheric CO2. 

 The amount of peatland in the catchment area controls the degree 
of supersaturation to a great extent. The most CO2 supersaturated 
streams were found in close connection to peatland outlets. 

 The soil export of DIC is the main source of the observed stream 
supersaturation of CO2. 

 The evasion of CO2 from the stream surface is a rapid process and 
much of the DIC crossing the soil/stream interface is transferred 
back to the atmosphere within hours and before leaving the 
headwater stream systems. 

 The gas exchange ability of CO2 across the water-atmosphere 
interface (KCO2) in stream systems is very variable but to a large 
degree controlled by the slope of the stream. 

 Evasion of CO2 is a major component (~70%) of the C export via 
the aquatic conduit in the Krycklan catchment. 

 Accurate landscape scale estimates of the evasion of CO2 require a 
good understanding of the controls on gas exchange at the water 
surface. Without this information estimates of landscape scale 
evasion loss from lotic systems will be associated with a very high 
degree of uncertainty. 
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However, it also raises a number of questions requiring further research: 

 The hydrochemical connectivity between the catchment soils 
(especially the riparian zone) and low-order streams, in order to 
improve the understanding of boreal stream networks and their role 
in the terrestrial/aquatic C cycle. 

 This thesis briefly explores the degree of CO2 supersaturation in 
streams across the forested Sweden. However, further large scale 
investigations are needed to be able to explain geographical 
patterns of CO2 in streams across larger scales. 

 Determining the source of DIC in the observed streams is essential 
for carbon balance estimates. Investigation of the stable isotopic 
composition (δ13C-DIC) is a useful tool in this work. 

 To be able to incorporate evasion of CO2 from streams in national 
and global C budgets requires a better knowledge of the physical 
occurrence of stream networks and also their temporal behaviour. 
We need to know how many streams there are and what area they 
cover! 
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