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Abstract
Berglund, J., 2004. Structure-function studies of organelle assembly and receptor
recognition in organelles assembled via the chaperone/usher pathway. Doctoral
dissertation.
ISSN 1401-6249, ISBN 91-576-6492-7.

Adhesion is an important first step in infection, where the microorganism attaches to a
host cell. In many cases adhesion is mediated by fimbriae, or pili; hairlike organelles
composed of a large number of protein subunits, protruding out from the bacterial
surface. In this thesis, the adhesion and assembly of two such organelles has been
studied: type-1 pili from Escherichia coli and the capsular F1 antigen from Yersinia
pestis.

The adhesin molecule of type-1 pili is FimH, and the structure of the FimH lectin
domain was determined to 2.3 Å. High structural similarity to the same domain in the
FimH:FimC adhesin:chaperone structure shows rigidity and structural independency
of the lectin domain. In the crystal structure a butyl mannoside was discovered in the
FimH binding site. Binding studies of alkyl mannosides and aryl mannoside show that
E. coli FimH recognizes these two classes of compounds with high affinity. Using a
series of trimannosides corresponding to structures present in N-linked high-mannose
glycoproteins, the binding properties of FimH from two different UPEC and one fecal E.
coli strains were investigated. Our results suggest that the differences in adhesion
phenotype mediated by these different adhesins are caused by differences in adhesin
presentation rather than by affinity differences.

The antiphagocytic capsule around Yersinia pestis is constructed from multiple copies
of the Caf1 subunit assembled into thin fibres. The structure of the Caf1M:Caf1
chaperone:subunit binary complex and the Caf1M:Caf1:Caf1 ternary complex from Y.
pestis was determined. Comparison of the chaperone bound Caf1 subunit with the Caf1
fibre subunit revealed that the Caf1M chaperone jams the folding of Caf1 in a high-
energy conformation with a poorly packed hydrophobic core. When the chaperone
dissociates and is replaced by the donor strand from the next subunit, folding i s
allowed to continue to completion. The folding energy released in this step i s
proposed to drive fibre assembly.

Keywords: carbohydrate binding, lectin, urinary tract infection, plague, antiphagocytic
capsule, pathogenesis, donor strand complementation, donor strand exchange,
immunoglobulin fold, vaccine, protein crystallography.
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1. Background

1.1 General introduction

Bacteria require nutrients in order to survive, and they have evolved diverse
strategies in order to facilitate their search for these nutrients. One example is
organelles for motility, allowing the microorganism to move towards a higher
concentration of the nutrient. The ability to attach to various receptors on surfaces
and/or other cells is another important development since this permits a more
permanent attachment close to a nutrient source.

Attachment of bacteria to a surface is mediated by adhesins displayed on the
surface of the bacteria, and the importance of this step is revealed in the number of
adhesins expressed by both Gram-positive and Gram-negative bacteria. Gram-
positive bacteria have a peptidoglycan cell wall on the outside of the cytoplasmic
membrane and adhesins are anchored to the cell surface either by attachment to the
peptidoglycan matrix, or by anchoring to the cytoplasmic membrane. Gram-
negative bacteria instead have two membranes, the inner and outer membrane
separated by the periplasmic space, with a peptidoglycan cell wall on the inside of
the outer membrane. The anchoring of adhesins is therefore different and the most
common adhesion structure for Gram-negative bacteria is the fimbrium, or pilus
(Ofek et al., 2003), a hairline organelle assembled from many protein subunits,
protruding out from the bacterial surface.

Most fimbriae attach to carbohydrate receptors on the surface of a host cell, either
by the subunit making up the bulk of the fimbriae or by a specialized lectin at the
tip. Different surfaces of a bacterial host have different types of receptors, which
are recognized by distinct types of fimbriae. In this way the type of adhesin
expressed on the bacterial surface can provide an important tool for the bacteria
when selecting a tissue for invasion - the bacteria show tissue tropism.

When assembling an organelle on the bacterial surface, the bacteria are faced with a
problem of transporting the subunits to be assembled across the cell membrane.
For this purpose a number of secretion systems have evolved, each one responsible
for the assembly of a certain type of organelle.

1.2 Secretion pathways

Secretion systems developed by Gram-negative bacteria are used for secretion of
surface organelles, toxins as well as nucleic acids. The secretion systems can be
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roughly divided into two groups, the general secretory pathway (GSP) and Sec-
independent secretion.

Sec translocase independent secretion pathways are exemplified by type I, type III
and in part type IV secretion. Type I secretion systems, also known as ATP
binding cassette (ABC) exporters (Binet et al., 1997, Stathopoulos et al., 2000),
allow translocation from the cytoplasm and through the two membranes without a
periplasmic intermediate. It consists of three parts: an inner membrane (IM)
spanning ABC exporter, an IM anchored protein that extends out through the
periplasm called membrane fusion protein (MFP), and an outer membrane (OM)
channel-forming protein (OMP). The proteins to be exported by this pathway
contain a carboxy-terminal peptide that targets the ABC exporter.

The type III secretion system is a complex apparatus (Hueck, 1998) which enables
the bacteria to translocate antihost factors directly into the cytosol of the target
eukaryotic cell. It is built up from approximately 20 different types of proteins,
most of which are located at the IM, and show high resemblance to the flagellar
export system. The type III apparatus extends from the IM, over the periplasmic
space, through the OM to the outside of the bacteria where it forms a hollow
organelle that can connect the bacteria to the eukaryotic cell. Secretion of Yersinia
outer proteins (Yops) represents the prototypical type III export pathway.

The general secretory pathway (GSP) utilises the Sec secretion machinery to
transport protein over the inner membrane. The protein sequence is targeted for Sec
secretion by an amino-terminal signal peptide. Proteins are then transported across
the IM in an unfolded state, and the signal peptide is cleaved off upon entry into
the periplasm. Three terminal branches finish the GSP and are responsible for the
transport over the outer membrane: type II secretion, the autotransporter pathway
and the chaperone/usher pathway.

The main terminal branch of the GSP is the type II secretion pathway
(Stathopoulos et al., 2000, Thanassi and Hultgren, 2000b, Nunn, 1999), which is
closely related to the biogenesis of type IV pili. This is a quite complex pathway,
which requires between 12 and 16 accessory proteins that together form a secreton.
The secreton spans from the IM to the OM, with a pore formed through the later.
Type II secretion is ATP dependent and utilises energy from the cytosolic side of
the IM to export proteins through the OM pore.

The autotransporter pathway (Henderson et al., 1998, Thanassi and Hultgren,
2000b) has everything needed for transport packaged into one protein. This protein
consists of three parts: an amino-terminal signal peptide, an internal passenger
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domain and a carboxy-terminal b-domain. The amino-terminal signal peptide
targets the protein to the Sec machinery to ensure IM passage. The b-domain is
predicted to fold into a beta-barrel, which inserts into the OM to form a pore
through the membrane. The passenger domain is then believed to pass through
this pore, where it is either retained at the surface, or cleaved off and released. The
process requires no input of external energy.

The third terminal branch of the GSP is the chaperone/usher pathway, which
utilises two accessory proteins for membrane transport, a chaperone and an usher
(Thanassi et al., 1998a, Thanassi and Hultgren, 2000a, Zavialov et al., 2001,
Berglund and Knight, 2003, Ofek et al., 2003). The chaperone/usher pathway is
used for assembly of a number of surface organelles, two of which have been
studied in this thesis.

1.3 The chaperone/usher pathway

1.3.1 Introduction

Gram-negative bacteria express fimbrial organelles on their surface, which are
typically used for attachment to host cells. The most common mechanism for
fimbrial biogenesis is the chaperone/usher pathway (Thanassi et al., 1998a, Sauer
et al., 2000, Thanassi and Hultgren, 2000a, Ofek et al., 2003). In this pathway,
the protein subunits are transported from the inner to the outer membrane, where
they are joined together to form a growing chain, which is subsequently
translocated through the outer membrane to the surface of the bacteria. The
subunits have to be protected from premature aggregation in the periplasm, as well
as inserted in the correct order into the organelle. A chaperone/usher pair directs
this process.

The protein subunits of the chaperone/usher pathway are transported over the inner
membrane by the Sec-machinery, where the signal peptide is cleaved off. In the
periplasm, the subunits remain associated with the membrane in a semi-unfolded
state. The chaperone retrieves the subunits from the membrane, and is thought to
aid in their folding and simultaneously cap the interactive surface to prevent
aggregates from being formed (Figure 1.1). If the chaperone is absent the subunits
cannot fold properly and form aggregates in the periplasm, which are later
degraded by proteases.
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Figure 1.1: Schematic picture of type-1 pilus assembly by the chaperone/usher
pathway. The chaperone FimC picks up the subunits at the inner membrane, assists in
their folding and delivers them to the usher, where they are incorporated into the
growing pilus.

The chaperone:subunit complexes are then targeted to the usher, located in the
outer membrane. The usher is thought to form a pore-like structure, through the
membrane, with an inner diameter of 2-3nm, large enough for the folded subunits
to pass through (Thanassi et al., 1998b). The subunits are assembled at the usher,
and the growing chain translocated through the usher pore (Figure 1.1). The
process does not require input of external energy (Jacob-Dubuisson et al., 1994).

1.3.2 Chaperone structure

PapD is the prototypic chaperone of a large chaperone family, and is part of the
assembly machinery for P pili from Escherichia coli. The structure was solved in
1989 (Holmgren and Branden, 1989), and has two immunoglobulin-like beta
barrels joined together at an approximate 90º angle (Figure 1.2A). The arrangement
of the two domains creates a cleft between them, in which two invariant,
positively charged amino acids, Arg8 and Lys112, are located (Figure 1.2B). All
of the chaperones contain a conserved inter domain hydrogen-bonding network,
and a highly conserved beta sheet in the N-terminal domain (Hung et al., 1996).  
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Figure 1.2: Chaperone PapD. (A) Front view of the two domains of PapD. (B) Top view
with PapD rotated 90°, and the conserved residues Arg8 and Lys112 shown in ball-and-
stick. Figure prepared using Molscript (Kraulis, 1991).

Sequence analysis of the chaperone family (Hung et al., 1996) revealed high
sequence similarity between the 26 members of the family known at that time (25-
56% sequence identity). It also demonstrated that the chaperone family could be
divided into two groups depending on features of the loop connecting the F1

strand with the G1 strand. In the first group this loop is quite short, giving the
chaperones the name FGS (FG loop short) chaperones. The second group has a
long F1-G1 loop, and is thereby given the FGL (FG loop long) epithet.
Interestingly, these two groups of chaperones seem to assemble two structurally
distinct types of organelles.  The FGS chaperones assemble rigid, complex pili,
consisting of several different types of subunits, with one ultimate subunit
dedicated to adhesion. The FGL chaperones on the other hand assemble more
simple, non-pilus structures, often consisting of one or at most two types of
subunits, which share the dual role of being both a structural subunit and an
adhesin.

The structures of several chaperones have been determined after PapD: FimC (type-
1) (Choudhury et al., 1999, Pellecchia et al., 1998), SfaE (S pili) (Knight et al.,
2002), and one FGL chaperone from a non-pilus system, Caf1M from the F1
capsule (Paper II). The structures reveal that the sequence similarity as expected
also results in a high structural similarity.

1.3.3 Donor strand complementation

Fimbrial subunits are not stable on their own, but if co-expressed with the
chaperone they form stable, soluble complexes. In this way two chaperone:subunit
complexes could be purified and crystallised, FimC:FimH chaperone:adhesin
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complex from type-1 pili and PapD:PapK chaperone:subunit complex from P pili.
The two structures were solved in 1999 (Sauer et al., 1999, Choudhury et al.,
1999). The structures revealed both the basis for the strong interactions of a
chaperone:subunit complex, and also provided a model for how the subunits in a
pilus are linked together.

FimH is a two-domain protein, with an amino-terminal lectin domain and a
carboxy-terminal pilin domain. The lectin domain is an 11-stranded beta barrel
responsible for carbohydrate binding, and the pilin domain is a smaller 6-stranded
beta barrel, which makes contacts with the chaperone in the complex, and is later
thought to mediate contacts with the next subunit in the pilus. PapK is a linker
protein from the flexible tip of P pili. It is a one-domain protein with a similar
fold to the pilin domain of FimH.

PapK and the FimH pilin domain both consist of an immunoglobulin-like beta
barrel, except the 7th strand is missing. This creates a cleft in the barrel between
strand A and F, exposing part of the hydrophobic core. In order to “repair” the
barrel, the chaperone donates its G1-strand to the subunit by inserting this strand
into the cleft. This complements the immunoglobulin fold in a mechanism termed
donor strand complementation, DSC (Sauer et al., 1999, Choudhury et al., 1999)
(Figure 1.3).

Figure 1.3 Donor strand complementation. The hydrophobic side chains of the core are
marked in dark grey. (A) Figure of the cleft in the barrel between strand A and F,
exposing part of the hydrophobic core. (B) The chaperone G1 and A1 strand are inserted
into the cleft, complementing the fold.
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The cleft is part of the subunit assembly surface  (see the following part) and by
capping the cleft of the subunits the chaperone is able to prevent premature
aggregation, and can guide subunits to the scene of assembly, the usher. The
incomplete fold and the exposure of part of the hydrophobic core also explain why
the subunits are unstable without the chaperone.

The discovery of donor strand complementation led to a hypothesis on how the
subunits in a pilus are linked together. All pilin subunits have an N-terminal
extension with a conserved pattern of alternating hydrophobic residues. This
extension was disordered in the PapD:PapK complex, and is not part of the beta-
barrel. The extended strand was suggested to replace the chaperone G1 strand of the
preceding subunit in the pilus, thereby complementing the immunoglobulin fold
of this subunit in a mechanism termed donor strand exchange (DSE) (Figure 1.4).

Figure 1.4 Schematic figure of donor strand exchange, where the chaperone G1 strand i s
replaced by the subunit Gdonor strand.

FimH does not have an N-terminal donor strand extension attached to its pilin
domain, but instead has a whole domain at this position, the lectin domain.
Following from the model described above, FimH can never complement another
subunit, but can only hold one ultimate position at the tip of the pilus.

In this thesis subunits from two types of organelles have been studied, type-1 pili
from uropathogenic E. coli (an FGS system) (Paper III), and the capsular F1
antigen from Yersinia pestis, the causative agent of plague (an FGL system)
(Paper I and Paper II).
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1.4 Urinary tract infections

Attachment of bacteria to their host cells is a first and crucial step in a number of
diseases, for example urinary tract infections (UTI:s). Although not lethal, UTI:s
are unpleasant diseases, and are responsible for a medical cost of around $2 billion
in the US alone (Foxman, 2002). 50% of all women are affected at some time in
their life (Foxman, 2002), and in many cases recurrent infections occur.
Uropathogenic E. coli (UPEC) are the most common cause of infection,
responsible for 80% of the reported cases (Ronald, 2002). UTI:s can be treated
with antibiotics, but resistant strains and recurrent infections are becoming an
increasing problem. Presently no vaccine is available.

A number of UPEC adhesive organelles have been reported as virulence factors for
UTI (Table 1.1). Different organelles show specificity for receptors in different
tissues of the host, and are therefore involved in different classes of UTI. Type-1
pili, present on 90% of all E. coli strains, have been shown to be critical for
establishment of cystitis (Bahrani-Mougeot et al., 2002, Connell et al., 1996).
Type-1 pili bind to Uroplakin 1a, a mannose containing receptor on the
uroepithelium of the bladder (Wu et al., 1996, Zhou et al., 2001, Min et al.,
2002). P pili bind to receptors in the upper urinary tract causing pyelonephritis.
F1C and S pili, which are related to each other and also show similarities to the
type-1 system, bind to galactosyl ceramide and globotriaosyl ceramide containing
receptors (Backhed et al., 2002, Khan et al., 2000) and to sialic-acid-containing
receptors (Korhonen et al., 1984, Hanisch et al., 1993). They are associated with
ascending UTI. The Dr family of adhesive organelles (Nowicki et al., 2001) do not
appear to recognise carbohydrate structures, but bind to the Dr(a+) antigen on the
surface of the decay-accelerating factor (DAF;CD55). Dr adhesins are associated
with cystitis and pyelonephritis.

Table 1.1 UTI-associated adhesion organelles

Organelle UTI Adhesin Receptor System

Type-1 pilus Cystitis FimH Mannose FGS
P pilus Pyelonephritis PapG Galabiose FGS
F1C pilus Ascending UTI FocH Galactose FGS
S pilus Ascending UTI SfaS, SfaH? Sialic acid, Galactose? FGS
Dr adhesins
(non-pilus)

Cystitis,
Pyelonephritis

DraE DAF, type IV collagen FGL

1.4.1 Type-1 pili

Type-1 pili and P pili, are the most studied pili systems. Type-1 pili mediate
binding to the glyco-protein Uroplakin 1a, which is glycosylated in one position
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with a high mannose (Wu et al., 1996, Zhou et al., 2001, Min et al., 2002).
Uroplakin 1a is a membrane protein in the asymmetric membrane covering the
uroepithelium in the bladder. Attachment of type-1 pili to the uroepithelium
triggers internalisation of the bacteria (Mulvey, 2002, Martinez et al., 2000,
Mulvey et al., 2001), and UPEC can thereby find a sheltered niche for intracellular
replication. The epithelial cells respond by exfoliation, in a suicidal attempt to
clear the bladder from bacteria. Bacteria that manage to escape from the dying cells
can invade the exposed underlying layer of cells. Infection by UPEC stimulates
production of cytokines and influx of neutrophils, as well as the expression of a
number of pro-inflammatory molecules.

The chaperone:usher pair FimC:FimD is responsible for the assembly of type-1
pili. The FimA subunit makes up the main part of the pilus, which consists of
many thousand copies of FimA linked into a fibril, wound up in a tight, right-
handed helix. A flexible tip is attached to this quite rigid rod-like structure, and
the tip consists of the two linker proteins FimF and FimG, and the adhesin
protein FimH, responsible for mannose binding (Figure 1.1).

1.5 Plague and F1 antigen

In sharp contrast to urinary tract infections, the plague is a highly invasive and
lethal disease, although fortunately it is not very common in our times. Yersinia
pestis is the causative agent of plague, which in the middle ages killed 17-28
million people in Europe alone, approximately 30-40% of the population at that
time (Drancourt and Raoult, 2002). There are, however, still outbreaks of plague
in e.g. India and Madagaskar (Mansotte, 1997, Boisier et al., 2002, Chanteau et
al., 2000, Ramalingaswami, 1995).

In bubonic plague, Yersinia pestis has an infection cycle that passes from infected
rats, via flea, and from the bite of the flea to humans (Titball et al., 2003, Perry
and Fetherston, 1997). The infection results in swelling of the lymph nodes
(bubos), presenting the classical symptom of bubonic plague. The infection can
occasionally spread to the bloodstream, leading to infection of the lungs and
thereby becoming pneumonic plague. Pneumonic plague is spread via aerosols
from human to human, mediating an extremely efficient invasion process which
can kill a human within a couple of days (Titball et al., 2003, Titball and
Williamson, 2001, Perry and Fetherston, 1997). Bubonic plague can be treated
with antibiotics, but pneumonic plague is difficult to treat because of the rapid
development, and even with antibiotic treatment the outcome is often fatal.
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Vaccines against plague exist, both in the form of killed whole cells and
attenuated live bacteria, although none of them approved (Titball and Williamson,
2001). A vaccine based on killed cells does not show effective protection against
pneumonic plague, and an attenuated vaccine retains some virulence and is
therefore not suitable for humans. A vaccine based on protein has shown
promising results, and the most efficient seems to be a mixture of the F1 antigen
and the V-antigen. V-antigen, or LcrV, is a protein secreted by the type III
secretion systems, and is involved in regulating Yop expression and secretion
(Price et al., 1991, Pettersson et al., 1999). The F1 antigen, Caf1, forms a capsule
around Y. pestis, and has been studied in this thesis (Zavialov et al., 2003a,
Zavialov et al., 2003b).

The F1 capsule is built up from one type of subunit, Caf1, linked together in thin,
fimbriae-like organelles forming a thick gel-like capsule around the bacteria
(Zavialov et al., 2002). The capsule is assembled by the FGL chaperone:usher pair
Caf1M:Caf1A, and expression regulated by Caf1R. The production of the capsule
is induced at 37°C.  Around 4 hours after induction the capsule can be observed at
the outside of the bacteria but full encapsulation takes up to two days (Du et al.,
2002, Perry and Fetherston, 1997).

The F1 capsule is antiphagocytic, and encapsulation of Y. pestis has been shown
to reduce the number of bacteria interacting with macrophages. A knockout of
Caf1M lowered the ability to prevent uptake by J774 cells (a macrophage-like cell
line) (Du et al., 2002), and F1 is therefore thought to act together with the
Yersinia outer proteins (Yops) to prevent phagocytosis. Since the F1 capsule is
induced only at 37°C, it is thought to be most important in the late stage of the
infection. The capsule has not (yet) been shown to mediate binding, which makes
it an unusual member of the chaperone/usher family where most organelles are
adhesins.

The Yersinia family consists of three members, Yersinia pestis, Yersinia
pseudotuberculosis and Yersinia Enterocolitica. All three species share a common
virulence plasmid encoding the type III secretion system of Yop virulence effector
proteins.  Y. pestis has two additional plasmids, pPla (or pPCP1) and pFra, both
unique to Y. pestis (Perry and Fetherston, 1997). pPla encodes the Pla protease
which has adhesive properties to extracellular matrix components, and is also a
possible invasin (Cowan et al., 2000). The second unique plasmid is pFra,
encoding both a murine toxin necessary for survival in the rat flea midgut
(Hinnebusch et al., 2002) and the operon to produce the F1 capsule.
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1.6 Aim and outline of this thesis

Many different types of organelles assembled by the chaperone:usher pathway are
known today, and many more presumably exist. A great deal of work has been put
into understanding the mechanism of assembly and adhesion of these organelles.

In this thesis two organelle systems have been studied in greater detail, the
structure and binding properties of the adhesin of type-1 pili from E. coli, FimH,
and the structure and assembly of the prototypic FGL system organelle, the F1
antigen from Yersinia pestis. A structure:sequence comparison of the known 3D
structures of domains from subunits from the chaperone:usher pathway organelles
has also been conducted. The methods used to obtain the results will be covered in
chapter 2, and the results and discussion of this investigation will be presented in
chapter 3, which is divided into three parts:

Section 3.1: To obtain a better understanding of FimH mediated adhesion, the
structure of the FimH lectin domain has been determined, and binding studies of
this domain to a variety of mannosides conducted. A comparison of the binding
properties of FimH from three different E. coli strains has given new insights into
the molecular basis of this adhesion.

Section 3.2: The first structure from a FGL system has been determined, the
Caf1M:Caf1 chaperone: subunit binary complex from the F1 capsule of Yersinia
pestis. The structure of the F1 minimal fibre, the Caf1M:Caf1:Caf1 ternary
complex, provided the first direct evidence of donor strand exchange. A
comparison of the Caf1 subunits in the binary and the ternary complex provide
insights into the driving force behind chaperone/usher mediated subunit folding
and organelle assembly.

Section 3.3: All domains from the chaperone:usher pathway with a known 3D
structure share an immunoglobulin fold, despite very low sequence similarity. A
comparison of the structures available has been performed in order to find sequence
similarities and structural patterns important for function of the subunits.
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2 Methods

2.1 X-ray crystallography

2.1.1 Introduction

Proteins are one of the fundamental building blocks of life, participating in a wide
variety of functions. The biological function of a protein depends on its three-
dimensional (3D) structure, which has evolved through selective pressure to
optimise the protein for its specific task. In order to understand the details of the
function of a particular protein it is therefore important to determine its 3D
structure.

The method used to determine the 3D structures of proteins in this thesis is x-ray
crystallography, a method based on the fact that electromagnetic radiation can
interact with the electrons in a protein. If x-rays hit a protein crystal (many ordered
copies of a protein molecule), scattering is enhanced in certain directions, allowing
it to be recorded on a detector. From the resulting diffraction pattern the electron
density can be retrieved, and a model of the protein built (Giacovazzo et al., 2002,
Drenth, 1994, McRee, 1999). The field of x-ray crystallography has been under
steady development since the first structural work on myoglobin and hemoglobin
by Perutz and Kendrew in the 1950’s. Since then 24444 structures have been
deposited in the Protein Data Bank (Feb. 24, 2004). The development of the
method is mainly due to advances in three fields: new and stronger sources of x-
rays in the form of synchrotrons, a rapid increase in computer hardware as well as
software, and the recombinant DNA technique making expression of large amounts
of protein possible. Synchrotrons with tuneable wavelengths also led to the
development of new phasing methods: MAD/SAD (Multiple/Single wavelength
Anomalous Dispersion), which is now a common method for the determination of
an unknown protein structure.

2.1.2 Determining the structure of the Caf1:Caf1M binary complex

The structure of the Caf1M:Caf1 complex from Y. pestis capsule was determined
using a combination of selenium MAD and platinum SIRAS. Structure
determination was not entirely straightforward, and special care had to be applied
in order to get correct phases. Since this was not trivial, the procedure used will be
described in some detail.

A native dataset of Caf1M:Caf1 complex was collected to 1.8Å resolution on
beamline id14:2, ESRF, France. The spacegroup was determined to be P21 with
the cell dimensions a = 36Å, b = 36Å, c = 69Å, b = 93° and 1 molecule in the
asymmetric unit. In order to determine the phases, seleno-methionine substituted
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protein was expressed, purified and crystallised, and a three-wavelength MAD data
set was collected at beamline id14:4, ESRF, France.

In the Caf1M:Caf1 complex there are 2 methionines per protein, which means that
with 100% incorporation there is 1 selenium per 96 amino acid residues. A good
MAD signal is estimated to be 3% for Bijvoet differences and 2% for dispersive
differences, which corresponds to maximum 90 residues per selenium
(http://www.chess.cornell.edu/Publications/Newsletter_1995/gomad.html).
Although structures have been solved with lower Bijvoet differences, this means
extremely accurate, high redundancy data need to be collected. This proved
difficult since the crystals suffered from radiation damage after the three-
wavelength MAD dataset, and the remote wavelength had to be discarded.

The Selenium positions were located using the program RSPS (Knight, 2000,
CCP4, 1994) and preliminary phases were obtained using the program SHARP
(La Fortelle and Bricogne, 1997).  The initial maps, however, were noisy and hard
to interpret. The crystals had a solvent content of 33%, which is quite low and
makes solvent flattening less powerful. In addition there was only one
molecule/asymmetric unit, which means the electron density cannot be improved
by NCS averaging.

To improve phasing power, platinum derivative datasets were collected near the LII

and the LIII absorption edges (beamline 7:11, MaxLab Lund and beamline id14:2,
ESRF, respectively). Using all available data in SHARP, parameter refinement
was not robust, and small differences in input parameters resulted in unexpected
fluctuations throughout refinement. This was especially true for the values of f'
and f", for which we only had rough estimates. In order to stabilise the process,
and to get reasonable initial values for the input parameters, a thorough boot
strapping procedure was applied using the program SHARP. By refining the
parameters carefully for one heavy atom compound at the time, and alternating the
runs with or without the use of external phases, reasonable estimates of the heavy
atom positions, occupancy, B-factors, f' and f" was obtained. Finally all the data
were put together in SHARP: 2 wavelengths of selenium data (peak and inflection
point), 2 platinum datasets plus native data. The values for f' and f" were locked to
the values obtained in earlier runs, and not refined any further. This proved to be a
successful strategy, and nice maps could be calculated and the model built. The
conclusion drawn from this is to be adamant that beamline scientists help in
getting good experimental values of f' and f", in difficult cases this will prove
important.
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2.2 Dot-blot

FimH is the mannose binding protein located at the ultimate tip of type-1 pili. In
order to determine whether it retained its mannose binding capabilities after
expression and purification, and thereby also most probably the correct fold, a dot
blot assay was developed. The idea behind the assay is the fact that FimH binds
horseradish peroxidase, which is a mannosylated protein. Horseradish peroxidase
catalyses the reduction of H2O2 to O2, and this conversion can be linked to the
oxidation of 4-chloro-1-napthol into an insoluble blue-coloured product. H2O2 in
the presence of 4-chloro-1-napthol can thus be used to detect peroxidase by the
appearance of a blue colour.

4 different concentrations of FimH were blotted onto nitrocellulose filter.
Blocking buffer containing 2% tween was applied to block further binding to the
filter. After washing, peroxidase at a concentration of 50µg/ml was added, and
allowed to bind to FimH. Excess peroxidase was washed away. Finally 4-chloro-
1-napthol was added in the presence of 0.01% H2O2 to detect bound peroxidase.

The assay was performed with Concanavalin A as a positive control, and
Lysozyme as a negative control, both in the absence and presence of mannose. The
results clearly show blue dots at the places where FimH lectin domain or
FimH:FimC complex were blotted on the cellulose filter (Figure 2.1). The absence
of blue dots, and thereby absence of bound peroxidase, when mannose was present
in the sample indicates that binding is mannose specific.

Figure 2.1. (A) Clear binding of peroxidase to FimH lectin domain (FimHtr),
FimC:FimH complex and ConcanavalinA, but no binding to Lysozyme. The difference
in staining is probably due to differences in protein concentration. (B) In presence of
mannose, peroxidase does not bind any of the proteins.
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2.3 Docking

When crystallographic studies of ligand binding proved impossible, the method of
docking was used. Docking is a tool to computationally simulate interaction of a
small ligand to a macromolecule of known 3D structure. All docking studies were
performed with the program Autodock3.0 (Morris et al., 1996).

Autodock keeps the structure of the macromolecule fixed, while searching the 6-
dimensional space created of three rotation angles and three translation axes for the
ligand. Autodock also allows the ligand to rotate around selected internal torsion
angles.

A grid of affinity potentials is created around the binding site of the
macromolecule, one grid for each atom type present in the ligand. Each grid
represents the interaction energy of the particular type of atom at every grid point.
Also, an electrostatic grid is calculated, using a point charge of +1 as a probe. At
every conformation and new position of the ligand, the interaction energy and the
internal energy of the ligand are calculated, searching for the energy minima.

In the docking studies performed in this thesis, the Lamarckian algorithm was
used for sampling the space of possible ligand conformations. Each simulation
consisted of 100 independent runs, with a population size of 200, 500 generations
and a maximum of 25000000 energy evaluations. The numbers were chosen based
on the work by Hetenyi and van der Spool (Hetenyi and van der Spoel, 2002), and
by personal communication with Dr. D. Choudhury. Solutions were ranked based
on their docking energies, and similar solutions were clustered. The top solutions
in each cluster were visually inspected using the program O (Jones et al., 1991).

2.4 Mass spectrometry

Mass spectrometry is a technique to determine the mass of protein or smaller
molecules to very high accuracy. It has become increasingly popular because of the
simplicity of using the method combined with highly accurate results, and is now
a standard technique in many laboratories.

The analyte of interest is converted into gas phase ions by various techniques
(Glish and Vachet, 2003), the most common being matrix-assisted laser
desorption/ionization (MALDI) and electrospray ionization (ESI). ESI was the
technique used in this thesis. In ESI a solution containing the sample is passed
through a small capillary, where a high voltage is applied to the outlet spray tip.
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This produces a fine spray of charged droplets containing the sample and its
solvent. Eventually the ions are separated from the solvent, and are transported to
the analyser, where the mass of the ion is determined.

ESI is very sensitive to salts, and also using an organic buffer in too high
concentration relative to the protein may mask the signal. The samples were
therefore dialysed against large volume of water over night. The sample was kept
at a concentration around 10-6 M, and diluted 50/50 with methanol to facilitate
ionization.

2.5 Determination of bidning constants

Many binding studies have been done on type-1 pili in the past, but most of them
were performed on entire, piliated bacteria, and not on the carbohydrate binding
protein FimH alone. To determine the dissociation constant (Kd) of a series of
mannose compounds binding to FimH, we developed the binding assay described
below (Figure 2.2).

Figure 2.2: Binding assay to determine the dissociation constant to a-D-mannose. Kd

is defined as the concentration of ligand when half the sites are occupied. By plotting
the counts per minute (CPM) against the concentration of mannose, Kd can be obtained
from the graph.

[3H]-mannose of 6 different concentrations, 0 - 43.5µM, was mixed with FimH
protein. The mixtures were incubated for 20 min at 37°C to allow equilibration.
After incubation, the mixture was applied to a filter (Portran BA 85
Cellulosenitrate filter, Schleicher & Schuell Germany), with pores large enough to
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allow passage of free mannose but small enough to retain protein, and thereby
mannose bound to protein. When a vacuum is applied, free mannose goes through
the filter. The filter was washed once with ice-cold 1ml PBS (phosphate buffer
saline) to wash away free mannose, and then put into scintillation liquid. The
radioactivity was counted for 3 min per sample.

By plotting radioactivity in the form of counts per minute (CPM) against the
concentration of mannose, a hyperbola can be fitted to the data, and Kd determined
from the mannose concentration half way to equilibrium (Figure 2.2). To get Kd of
different mannose derivates, the same experiments were performed with the
concentration of mannose kept fixed at 43.5µM and instead varying the
concentration of the inhibitor. The amount of mannose bound in the presence of
the inhibitor was measured, and could be plotted against the concentration of the
inhibitor. The [I]0.5 value of the inhibitor (inhibitor concentration displacing 50%
of the ligand, IC50) can be determined from this plot, and the Kd of the inhibitor is
given by the Cheng and Prusoff (Cheng and Prusoff, 1973) equation:      

† 

KI =
I[ ]0.5

L[ ]
KL

+1

[I]0.5 is the IC50 value of the inhibitor, [L] is the concentration of a-D-mannose
and KL is the dissociation constant of a-D-mannose. This equation was used when
both the concentration of the radioactive ligand (L) and the displacing agent (I) are
in excess over the protein (LT>>RT; IT>>RT, T indicates total concentration),
(Cheng and Prusoff, 1973). For very strong inhibitors, when IT is no longer in
excess over RT, another version of the equation was used:

† 

KI =
IT

1-Y
Y

⋅
LT

KL

-1
-

RT ⋅ KL ⋅Y
LT

(Horovitz and Levitzki, 1987) where Y is the fraction of the ligand bound in
presence of the inhibitor. A plot of IT/((1-Y)*(LT/KL)-Y) against 1/Y gives a
straight line with a slope of KI.
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3 Results and discussion

3.1 FimH lectin domain (Paper III)

3.1.1 Introduction

One FimH carbohydrate binding protein is situated at the tip of each type-1 pilus.
FimH is a two-domain protein consisting of one lectin domain and one pilin
domain, and the structure of FimH in complex with its chaperone FimC was
solved previously in our laboratory (Choudhury et al., 1999). In this thesis the
lectin domain of FimH has been extensively studied in order to understand the
molecular details of the carbohydrate binding mechanism. The aim was to
investigate if the lectin domain is structurally and/or functionally independent of
the pilin domain, to determine the binding specificity to various mannose-
compounds and to verify whether this specificity is maintained between FimH
variants originating from different strains of E. coli.

3.1.2 The structure of FimH lectin domain

A truncated FimH, FimHtr, consisting of the FimH lectin domain can be
expressed separately from the pilin domain and has been shown to be stable and
soluble on its own (Schembri et al., 2000). A construct was made consisting of
the first 158 amino acids of FimH, with a carboxy-terminal 6-his-tag attached
(Schembri et al., 2000). The protein was purified using Ni chelate chromatography
and crystallised in 65% MPD, 100mM Cacodylate buffer pH 6.5 using hanging
drop vapour diffusion. Data were collected to 2.5Å resolution at beamline 7-11,
MaxLab, Lund, and later to 2.3Å resolution at id29 at the ESRF, Grenoble,
France. The structure was solved with molecular replacement using Molrep
(CCP4, 1994) with the lectin domain of the FimH:FimC complex as a search
model. All 158 amino acids could be modelled into the density, with the
exception of the 6-his-tag, which was not visible.

The FimH lectin domain is an 11-stranded beta-barrel with a jelly-roll like
topology, built from 3 beta sheets (Figure 3.1). The back sheet is rather large and
runs along the whole back part of the beta barrel while the front of the barrel is
divided into 2 sheets, related by a pseudo two-fold axis.
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Figure 3.1 The structure of FimHtruncate with the back sheet coloured black, the front
sheets in grey.

The mannose binding-site is located at the tip of the barrel, identified both
crystallographically (Choudhury et al., 1999, Hung et al., 2002), and by
mutagenesis (Hung et al., 2002). The binding site forms a deep cave made up
from three rather short loops, and is large enough to totally enclose a mannose-
ring. The back of the cave is made up from loops b3-b4 and b10-b11, while the
lower front consist of loop b2-b3, and the floor is constituted by the amino-
terminus. The binding cavity is situated at the side of the tip of the domain,
shielded from the top by the two back-wall loops, and particularly by two tyrosine
rings, Tyr48 and Tyr137, one on each loop (Figure 3.2).

Figure 3.2 Tyrosine gate coloured grey, and a bound mannose shown in ball-and-stick
in the monomannose binding pocket.
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The structure of FimHtruncate is very similar to the lectin domain in the
FimC:FimH complex (an overall r.m.s.d. of 0.55Å for 158 Ca atoms). The main
difference can be seen in the b9-b10 loop, which stabilises the linker-region
between the lectin domain and the pilin domain. In the FimC:FimH complex, the
b9-b10 loop packs against the chaperone, while in the FimHtr structure it packs
against the linker region. The mannose-binding site, which is located at the
opposite end of the domain, is practically unchanged, and amino acids making up
the binding pocket have virtually identical side chain conformations in the two
structures. The high structural similarity between FimHtr and the lectin domain in
the FimH:FimC complex indicates that the lectin domain is structurally
independent of the pilin domain.

The affinity of a-D-mannose for FimH was determined using [3H]-labelled
mannose (see chapter 2) and a value of Kd = 4.1µM was obtained. This is a quite
strong binding for a mono-carbohydrate binding to a lectin, normally in the mM
range (Rini, 1995), and confirms that the tight fit of the mannose-ring in the
binding site is also reflected in strong binding. In order to examine whether a
binding constant determined for the FimH lectin domain is a reasonable estimate
for FimH binding, binding of a-D-mannose to full length FimH in complex with
the chaperone FimC was also measured. A Kd = 5.3µM was obtained, which
corresponds well to the measured value for FimH lectin domain. Hence, removal
of the pilin domain does not seem to affect the binding properties of the lectin
domain (Paper III).

3.1.3 Butyl mannoside

When all 158 amino acids of the FimH lectin domain had been modelled, a strong
FO-FC density still remained in the mannose-binding site, although no mannose
was present in the crystallisation setup or in the protein buffer. A mannose unit
could nicely be modelled into this density (Figure 3.3A). After refinement, an
additional difference density turned up at the O1 oxygen, extending out of the
binding pocket (Figure 3.3B). An alkyl tail of four carbon atoms could be
modelled into this extra density, suggesting that the bound ligand was a butyl
mannoside (Figure 3.3C) (Paper III).

The position of the mannose ring superimposes well with the structure of a-D-
mannose bound to FimH (Hung et al., 2002), making direct contacts via hydrogen
bonds to the side chains of residues Asp54, Gln133, Asn135 and Asp140, and to
the main chain of Phe1 and Asp47. Additional, water mediated hydrogen bonds
are observed between the mannose ring and the side chain of residue Glu133 as
well as the main chain of Phe1 and Gly14. The alkyl tail extends out of the
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pocket, packing against the rings of Tyr48 and Tyr137, situated on the two back-
wall loops of the binding cavity (Figure 3.3).

Figure 3.3. (A) A mannose modelled into FO-FC density. (B) Butyl-mannoside modelled
into the binding site with the 2FO-FC map shown. (C) Stereo figure of the interactions
between FimH and the butyl-mannoside.

To verify the identity of the ligand, electro-spray ionization mass spectrometry
(ESI-MS) was used. A reference sample of butyl-mannoside was synthesised,
which showed a strong peak at 259D in the MS, consistent with a butyl-
mannoside plus a Na-ion (Figure 3.4A inset). When repeated with a sample of the
protein, also here a peak of 259D could be measured (Figure 3.4 A). The fact that
the ligand has the exact molecular weight of a butyl mannoside and with electron
density matching such a compound, strongly supports the crystallographic
identification of the ligand as a butyl mannoside.

Hypothesising that the LB-media used for growing the bacteria was the origin of
the ligand, the protein was re-expressed in bacteria grown in M9-minimal media
and purified according to the same protocol. When running a sample of this
protein through the MS, no peak could be detected at 259D (Figure 3.4B),
suggesting that the LB media is indeed the origin of the butyl mannoside.
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Figure 3.4. (A) ESI-MS on FimH expressed in E. coli grown in LB-media, with a
reference butyl-mannoside spectrum as an inset. A peak of 259D, consistent with a
butyl-mannoside, is visible in both spectra. (B) In protein expressed in bacteria grown
in minimal media, the 259D peak is no longer present.

3.1.4 Binding studies of alkyl mannosides

The butyl mannoside discovered in the binding site of FimH suggested a new
class of FimH inhibitors, alkyl-substituted mannosides. The butyl mannoside
resides in the binding-pocket throughout purification and extensive dialysis
against mannose-free buffer, which suggests that binding between FimH and alkyl
mannosides is quite strong.

The dissociation constant to a number of alkyl mannosides was determined using
displacement studies (see chapter 2). The added binding strength mediated by the
hydrophobic tail can be nicely demonstrated by the binding series of methyl up to
octyl mannoside (Table 3.1).

As can be seen in the table, the binding strength increases by a factor of two for
every methyl group added to the mannose ring in a near linear decrease (Figure
3.5), and heptyl and octyl mannoside both proved to be very strong binders (Table
3.1). The fact that alkyl mannosides are easily synthesised, in addition to being
highly soluble in water make them interesting potential blocking agents of FimH
mediated adhesion.
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Table 3.1: Binding constants of a series of alkyl mannosides

ligand Kd (M) DG0(kcal/mol)

a-D-mannose 4.1E-6 -7.6
methyl mannoside 1.8E-6 -8.1
ethyl mannoside 7.4E-7 -8.7
propyl mannoside 4.0E-7 -9.1
butyl mannoside 1.5E-7 -9.7
pentyl mannoside 2.0E-7 -9.5
hexyl mannoside 1.0E-7 -9.9
heptyl mannoside 3.2E-8 -10.6
octyl mannoside 2.8E-8 -10.7
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Figure 3.5. Binding energy for each of the alkyl mannosides. A near linear increase of
binding strength can be seen for each methyl group added to the mannose ring.

3.1.5 Aromatically substituted mannosides

Aromatically substituted alpha-glycosides of mannose have previously been shown
to bind strongly to FimH, indicating that the binding site includes a hydrophobic
region next to the mannose-binding pocket (Firon et al., 1987, Firon et al., 1984).
The strongest binders in the study done by Firon et al. were 4-methylumbelliferyl-
a-mannoside (MeUmbaMan) and p-nitro-o-chlorophenyl-a-mannoside
(pNoClPaMan), binding up to 1000 and 70 times stronger than methyl-a-D-
mannoside respectively (Firon et al., 1987, Firon et al., 1984). We determined the
dissociation constant to 12nM for MeUmbaMan and 26nM for pNoClPaMan,
which is around 220 and 90 times stronger than the determined binding for a-D-
mannose.
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Figure 3.6: Schematic structure of (A) 4-methylumbelliferyl-a-mannoside and (B) p-
nitro-o-chlorophenyl-a-mannoside.

Despite extensive trials no crystals could be obtained with FimH in complex with
either of these compounds, possibly due to restrictions of crystal packing. To
nevertheless get an indication of the binding mode, the compounds were docked to
FimH using the program Autodock3 (Morris et al., 1996) (chapter 2).  

Both compounds dock with their mannose ring in the same conformation as the
crystallographically determined mannose (Figure 3.7). For the MeUmbaMan
compound, basically all solutions cluster in one group, with the umbelliferyl rings
inserted between the two tyrosine rings, Tyr48 and Tyr137, making tight stacking
interactions (Figure 3.7A). These interactions could easily be imagined to provide
the extra binding strength. The lowest docking energy obtained for MeUmbaMan
was Edoc = -10.9 kcal/mol. pNPaMan docking results are also individually very
similar and pNPaMan orients its phenyl ring towards the two tyrosines, with a
docking energy of Edoc = -10.4 kcal/mol. The phenyl ring does not quite reach in
between the two tyrosines, but instead hydrogen bonds with the nitro group to the
carboxyl group of Tyr137 (Figure 3.7B).

Both the docking experiments and the crystallographically determined butyl-
mannoside structure points towards the importance of the tyrosine gate. The alkyl
tail of the butyl-mannoside packs against the two aromatic rings, and the
umbelliferyl aromatic ring-system inserts between them. These data suggest that
the tyrosine gate corresponds to the extended hydrophobic region of the mannose-
binding site proposed by Firon et al. (Firon et al., 1984).

Carbohydrate rings frequently interact with aromatic side chains, and the tyrosine
gate could be imagined to be part of a trimannose binding-site. Docking attempts
with trimannoses (unpublished) show a tendency to dock with the non-reducing
end in the mannose pocket and the reducing end inserted in the tyrosine gate,
again pointing towards an important role of the two tyrosines.
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Figure 3.7. Stereo-figure showing docking results from (A) 4-methylumbelliferyl-a-
mannoside and (B) p-nitro-o-chlorophenyl-a-mannoside, with a crystallographically
determined mannose-ring shown for comparison.

3.1.6 Different strains of E. coli show different binding phenotypes

Type-1 pili are present on over 90% of all E. coli strains, pathogenic as well as
commensal. For a long time it remained unclear if type-1 pili should be
considered an UPEC virulence factor since they are also present on non-pathogenic
strains. As more results accumulated, an apparent pattern was revealed. Although
FimH proteins in different strains have very conserved sequences (Hung et al.,
2002, Abraham et al., 1988), differences exist that give rise to differences in
binding pattern. Sokurenko and co-workers have divided the different strains into
two groups with distinct phenotypes: members of both groups bind well to
trimannosyl residues, but only one group shows tight binding to monomannosyl
residues (Sokurenko et al., 1992, Sokurenko et al., 1997, Sokurenko et al., 1998,
Sokurenko et al., 1995). Here trimannosyl residues refer to compounds with a free
trimannoside, mostly RnaseB or BSA-linked trimannosides (man(1,3)-man(1,6)-
man). Monomannose high binding refers to strong binding to structures with a
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terminal mannose, such as yeast mannan. A correlation between strong binding to
yeast mannan and binding to BSA-linked a-D-mannose has been shown
(Sokurenko et al., 1997). UPEC strains seem to typically belong to the
monomannose high binding group, whereas fecal, commensal strains are
monomannose low binders. Binding well to monomannose correlates with
capability to agglutinate red blood cells and with high binding to the
uroepithelium (Sokurenko et al., 1997).

Interestingly, the sequence differences between the two phenotypes are not
typically located in the identified mannose-binding pocket, but rather at the
opposite end of the domain, often in or close to the linker region between the
lectin domain and the pilin domain.

3.1.7 FimH affinity to trimannosides

Binding studies on E. coli have traditionally been done on entire, piliated bacteria.
We decided to determine whether the above results would be reflected in
measurements done on the FimH protein. The FimH lectin domain from three
different clinical isolates were chosen for this study: J96, CI#4 and F18. CI#4 and
J96 are both high monomannose binding UTI strains (Sokurenko et al., 1995) and
F18 is a low monomannose binding fecal strain, that does not agglutinate RBC
and does not bind J92 human bladder epithelial cells (Sokurenko et al., 1995,
Sokurenko et al., 1997). The sequence of the FimHJ96 lectin domain differs from
the two others by mutations V27A, N70S and S78N. FimHCI#4 differs from
FimHF18 and FimHJ96 in mutation G73E, located at the lower part of the lectin
domain on the opposite side to the linker region.

The binding constants of a series of different trimannosides to the FimH lectin
domain from the three strains were determined and compared to a-D-mannose
binding. The trimannosides chosen correspond to structures present in N-linked
high-mannose glycoproteins.

Table 3.2. Results from binding studies with a series of tri-mannosides to FimH from
three different E. coli strains. The tri-mannosides are all branches from the high-
mannose tree, shown to the right of the table.

In contrast to results showing differences in monomannose binding between these
three strains, our results instead point towards conform binding (Table 3.2), with a
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virtually identical binding phenotype for FimHF18 and FimHCI#4. For
monomannose binding, a Kd of 10µM for FimHF18 and 11.4µM for FimHCI#4 was
determined, and correspondingly similar binding constants to the trimannose
series (Table 3.2). This suggests that the G73E mutation has no effect on affinity,
and hence that affinity of FimH to mannose is not responsible for the differences
in binding observed between the strains.

FimHJ96 seems to have a significantly higher affinity for all compounds tested in
this study, suggesting that the V27A, N70S and S78N mutations are of
importance. Even though this significant difference in affinity exists, FimHJ96

binding follows the same trend as the other two, suggesting that the shape of the
binding site is very similar in all three proteins. Differential binding of the
trisaccharides presumably reflects differences in the fit to an extended binding site,
where the stronger binders are able to fit the additional mannose residues more or
less well, giving rise to an increased number of interactions.

3.1.8 Why does shear force promote monomannose high binding?

Thomas et al. (Thomas et al., 2002) show in an interesting experiment how shear
force influences adhesion of piliated bacteria, and moreover that different strains
are differently affected by shear force. Monomannose low binding strains of E. coli
are not capable of agglutinating red blood cells (RBC) under static conditions.
When these strains are subjected to shear, agglutination of RBC:s is observed.
Binding is reversible, so when shear is released the RBC:s are released. Mono
mannose high binding strains bind to RBC:s with roughly the same strength with
or without shear.

Mutations influencing shear dependence are again not found in the mannose-
binding pocket, but close to the linker region between the two domains. Thomas
et al. show in the same article that if this linker region is stabilised, shear is
required for RBC agglutination – the bacteria become shear dependent. If this
region instead is kept flexible, RBC agglutination is possible independently of
shear force.

Several suggestions for how mutations around the linker region would influence
specificity have been proposed. The main hypothesis involves exposure of cryptic
binding sites upon shear, or conformational changes propagating from the linker
region to the binding site. Based on our results we instead propose that the
presentation of the mannose-binding site is crucial for binding, which would be
facilitated by a flexible linker region. The binding site is not situated at the very
tip of the domain but rather displaced to one side, thus shielded from the tip by
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the back wall of the cavity. Flexibility between the two domains could therefore
be imagined to generate a productive presentation of this site to a surface of
receptors. If one pilus displaying a FimH binds to its receptor, the flexibility
might enhance binding of another pilus nearby, and yet another pilus nearby the
second (Figure 3.8). The added binding strength from many pili would enlarge
any such effect on binding, and the accumulated effect would show up as a high
binding strain.

Figure 3.8. Low flexibility in the linker region might lead to low avidity and poor
adhesion. High flexibility mediates high avidity and strong adhesion.
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3.2 F1 antigen (Paper I and II)

The capsular F1 antigen from Yersinia pestis is the prototype system for atypical
adhesins assembled by the FGL chaperone/usher pathway. No structure was
previously available from any of the components of an FGL system.

3.2.1 The Caf1M:Caf1 binary complex

Caf1 subunits have been shown to assemble into short Caf1M:(Caf1)n fibres in the
periplasm in the absence of the Caf1A usher (Zavialov et al., 2002). In order to
prevent this pre-assembly and to facilitate purification, the amino-terminal donor
strand was exchanged for a 6-his-tag, which completely abolished fibre formation
(Paper I). The Caf1M:Caf1 chaperone:subunit complex could thus be over-
expressed, purified and finally crystallised in 25% PEG 4000. The structure was
solved by a combination of Selenium MAD and platinum SIRAS, see Chapter 2.
ARP/wARP (Morris et al., 2002, CCP4, 1994) traced a large part of the molecule
and improved the phases further, and the missing part of the molecule could be
built with the graphics program O (Jones et al., 1991).

The structure of the Caf1M chaperone is very similar to the structures of the FGS
chaperones. It consists of two Ig-like domains, joined at 90° angle. Two cysteines,
Cys98 and Cys137, have been shown to be important for Caf1M folding and are
conserved in all FGL chaperones (Zavialov et al., 2002, Hung et al., 1996). In the
structure they can be seen to stabilise the long F1-G1 loop by forming a disulfide
bridge between the two strands, a disulfide bridge likely to be conserved
throughout the FGL chaperone family. The F1-G1 loop itself was only partly
visible in the electron density, indicating that the loop is flexible in the crystal
(Paper II).

Figure 3.9. Stereo-figure of the binary complex, with the Caf1 subunit in blue and
Caf1M chaperone in orange with the G1 and the A1 strand in red. The disulfide bridge
between the G1 and the F1 strand shown in ball-and-stick.
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The Caf1 subunit, despite virtually no sequence similarity, has a surprisingly
similar fold to the pilin subunits in the FGS-systems. It shows the typical Ig-like
6 strand beta barrel with the 7th strand missing, thus exposing part of its
hydrophobic core. The G1 strand of the Caf1M chaperone is inserted parallel to the
F strand of the Caf1 subunit (Figure 3.9), donating large hydrophobic residues to
the subunit core. Similarly the A1 strand of the chaperone binds in an anti-parallel
mode to the A strand of Caf1. The two proteins thereby form a 'super barrel' from
two beta sheets with a fused hydrophobic core. One sheet of the super barrel is
made up from strand C and F from Caf1 and G1, F1, C1 and D1 from the
chaperone. The other sheet consists of strands E, B and A from Caf1, and strand
A1, B1 and E1 from the chaperone. The same type of super barrel can be seen in the
FGS-system complexes, although less apparent (Figure 3.10).

Figure 3.10. Stereo-figure of the Caf1M:Caf1 super barrel. Strands belonging to Caf1
in grey and Caf1M strands in black.

The 4 first hydrophobic side chains of the chaperone, Val126:128:130 and
Phe132, are inserted into the Caf1 core but the 5th hydrophobic residue Ile134
instead packs sideways onto the cleft. The A1-strand side chains are not inserted
into the core of the subunit, but pack onto the side chains of Caf1 A-strand to
form a second layer of the fused hydrophobic core. The carboxy-terminus of Caf1
is anchored in the cleft formed by the two chaperone domains, hydrogen bonding
to the conserved residues Arg20 and Lys139. The amino-terminal histidine-tag is
not visible in the electron density.

The long G1-donor strand of Caf1M, typical of a FGL chaperone, is matched by a
long F-strand in Caf1, which gives a correspondingly long acceptor cleft. The
FGS chaperones donate three hydrophobic residues in the donor strand
complementation, while Caf1M donates five. The longer acceptor cleft and
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chaperone donor strand might reflect the lower complexity of the FGL systems.
The FGL chaperones have one, or maximally two different subunits to recognise,
and would thereby be able to bind with a higher specificity given by the longer
G1-strand with more donated residues. The FGS chaperones need to recognise and
bind to several different subunits in order to assemble the more complex pilus. A
shorter G1-strand might give more flexibility to this binding, thus making the
FGS chaperones more promiscuous.

3.2.2 The Caf1M:Caf1:Caf1 ternary complex

In order to get direct evidence for donor strand exchange and to visualise the
structure of the smallest possible F1 fibre, the structure of the Caf1M:Caf1:Caf1
chaperone:subunit:subunit complex was determined. A mutation of Ala9Arg in the
N-terminal strand had previously been shown to hinder larger assemblies from
forming (Zavialov et al., 2002). This mutant was expressed and the
Caf1M:Caf1:Caf1 ternary complex purified and crystallised. The structure was
solved by molecular replacement using the Caf1M:Caf1 binary complex as a
search model, and refined to 2Å.

The Caf1M chaperone and the chaperone bound Caf1 subunit are very similar to
the Caf1M:Caf1 binary complex, as expected. They have an overall r.m.s.d. of
0.49Å over 324 equivalent Ca-positions. The major difference is observed in the
amino-terminal extension, which in the binary complex is exchanged for a his-tag
and disordered in the structure. In the ternary complex the amino-terminal
extension has replaced the G1 strand of the chaperone, and hydrogen bonds anti-
parallel to the F strand of the Caf1 fibre subunit (Figure 3.11) providing the first
direct evidence for donor strand exchange (Paper II).

The donated strand from the Caf1 subunit is termed Gdonor, since it replaces the
missing G strand in the subunit Ig-fold. The Arg9 mutation lies within the Gdonor

strand, and hinders polymerisation of Caf1 into larger assemblies. In the structure,
Arg9 has a conformation that seems to be a mimic of an alanine. The first atom of
the side chain, CB, points into the core of the subunit while the following atoms
of the arginine side chain make a sharp turn and point out towards the solvent.
Although the arginine is bent in a mimic of an alanine, it is still inevitably larger.
The arginine side chain packs against Tyr23 on the Caf" A-strand, and the area
around the arginine shows elevated B-factors, indicating that the region might be
destabilised.
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Figure 3.11. Stereo figure of the Caf1M:Caf1:Caf1 ternary complex. Chaperone in
black, chaperone bound subunit in white, and the Caf1 fibre subunit in grey.

To simplify the following discussion, the chaperone bound Caf1 subunit will
hereafter be termed Caf1' and the fibre subunit Caf1''. Caf1'' is structurally
relatively different from Caf1', with an r.m.s.d. of 1.2Å over 130 equivalent Ca
atoms. The N-terminal strand of Caf1' replaces the G1 plus the A1 strand of the
chaperone, hence two strands are replaced by one. There is also a size difference
between the side chains of the chaperone G1 strand and the subunit Gdonor, the
bulkier chaperone side chains Val, Val, Val, Phe and Ile are replaced by Leu, Ala,
Ala, Thr and Ala (Figure 3.12).

Figure 3.12. Comparison of Caf1M G1 side chains to Caf1 Gdonor side chains

In order to match these new conditions, the entire core of Caf1'' has been
rearranged to become more condensed. Aligning Caf1' with Caf1'' by matching
their F and C strands clearly visualises this. The entire beta sheet 1 of Caf1'',
made up of strands A, B, E and D, is rotated inwards in order to narrow the
acceptor cleft and to fill the gaps in the core (Figure 3.13). This is particularly
obvious in the upper part of the Caf1'' molecule, where previously the A1 strand of
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the chaperone was bound. The Caf1'' A strand has moved closer to the donor
strand by around 2Å in this part of the molecule.

Figure 3.13. Stereo figure of the collapse of the Caf1 hydrophobic core. Caf1' is shown
in black and Caf1" in white, with the residues of the Caf1' Gdonor in ball-and-stick to be
compared with the Caf1M G1 strand in grey.

3.2.3 Folding energy is preserved by the chaperone

Assembly of organelles via the chaperone:usher pathway does not require input of
external energy. In donor strand exchange, the subunits switch from a
chaperone:subunit complex to a subunit:subunit complex, which means two
chaperone strands (G1 and A1) are replaced with only one subunit strand, the Gdonor

strand. Owing to the transition from a two-strand to a one-strand interaction, the
contact area in the chaperone:subunit complex is larger than the corresponding area
in the subunit:subunit complex. While the chaperone:subunit contact buries an
area of 3600Å2 total  and 2250Å2 hydrophobic surface area, the subunit:subunit
interface buries only 2250Å2 total and 1400Å2 hydrophobic surface area. This
implies a larger enthalpy of binding between the subunit and the chaperone than
the subunit:subunit, unless the fit of the chaperone:subunit complex is poor.

In order to compare how well two proteins fit together in a complex, the shape
correlation statistics (Sc) can be calculated (Lawrence and Colman, 1993). Sc = 0
corresponds to no geometrical fit, while Sc = 1 would be a perfect fit. Sc for the
Caf1M:Caf1 complex gives a value of 0.74 for the whole interface and 0.76 for the
G1 strand. The Caf1:Caf1 interface gives a Sc of 0.78. These values are all in the
range for well-fitting protein complexes, and suggest an equally good fit between
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the chaperone:subunit complex and the subunit:subunit complex. This raises the
question as to how donor strand exchange will ever occur without the input of
external energy.

The answer is suggested by the rearranged core of the Caf1'' subunit. An Sc
correlation of the fit between the two beta sheets in the barrel of the Caf1' and the
Caf1'' subunit can be calculated. The internal fit of the Caf1' (chaperone bound)
subunit gives a value of 0.58 which is indicative of a poorly packed hydrophobic
core. This value should be compared to an Sc of 0.71 for the packing of the beta
sheets in the Caf1'' subunit, indicative of a well-packed core. The chaperone thus
traps the Caf1' subunit in a poorly packed conformation, whereas the Caf1"
subunit has collapsed to a near optimal packing. The chaperone can be imagined to
jam the final step of the folding process, thereby preserving some of the folding
energy. Release of the chaperone would allow folding of the subunit to be
completed, and the drop in energy between the chaperone-bound subunit-
conformation and the final, collapsed conformation, is suggested to drive fibre
assembly (Figure 3.14).

Figure 3.14. Free energy of a subunit during the assembly process. To the left in the
diagram a stable complex between a subunit and a chaperone, with the G1 and the A1

strands of the chaperone shown as white arrows. When removing the chaperone, the
open high-energy conformation of the subunit would be very unstable, with a free
energy increase of DGdc. If packing of the chaperone bound subunit proceeds to the
compact form the energy would decrease with DGf. The donated strand from a subunit
(black arrow) can complete the fold that would drop the energy with DGds to the final,
low-energy conformation of a subunit in a fibre. The drop in energy between the first
Caf1' and the Caf1" subunit, DG, drives fibre assembly.

The conformation of Caf1' is expected to be very unstable in solution, whereas the
Caf1" fibre subunit is folded much more like a native protein, and could be
imagined to have some stability (Figure 3.14). A study by Vetsch et al (Vetsch et
al., 2002) demonstrates that the pilin-domain of FimH can fold spontaneously in
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the absence of the FimC chaperone, although in such conditions the subunit is
only marginally stable. Self-folded FimH does not bind to the chaperone FimC to
a very high extent, whereas binding of unfolded FimH is much more efficient
(Vetsch et al., 2002). This implies that once the subunit has collapsed into its
final packing, it is energetically unfavourable to go back to the open form needed
to bind the chaperone.

The chaperone preferentially binds to unfolded subunits, and folding of subunits is
promoted by the chaperone (Vetsch et al., 2002). Based on our structures we
proposed a model for how the chaperone promotes subunit folding (Paper II). The
chaperone can be seen as a scaffold for folding, where it provides a nucleus of large
hydrophobic side chains around which the subunit can efficiently fold. The
hydrophobic side chains of the chaperone would consequently be inserted deep
into the hydrophobic core of the subunit, thereby effectively jam the folding
process and trapping the subunit in the high-energy state.
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3.3 The immunoglobulin fold in organelle subunits

3.3.1 Introduction

Members of the immunoglobulin fold family (IgFF) are evolutionary distantly
related proteins, or possibly analogous proteins that have evolved towards a
common, stable fold. No sequence signature can be defined for the family, and in
some cases the protein 3D structure is needed for identification of a new family
member. The Ig fold can be found in a large variety of organisms, and has been
encountered in vertebrates, invertebrates, bacteria, viruses, fungi and plants.
Proteins with this fold show highly heterogenic tissue distribution and diverse
biological roles (Williams and Barclay, 1988, Halaby et al., 1999, Halaby and
Mornon, 1998).

Typical for the immunoglobulin fold is the existence of 7-10 beta strands, forming
a beta barrel from two beta sheets of conserved topology and connectivity. The
two sheets typically consist of strands ABED/CFG, where the D strand is not
obligatory and the C strand in some cases is divided into C, C' and C''. B, E and
F, G are the most conserved strands, while the A strand varies and is difficult to
superimpose in distantly related proteins. The Ig domains often, but not always,
have a disulfide bridge connecting strand B and F (Halaby et al., 1999).

3.3.2 The immunoglobulin fold in organelle subunits

The 3D structure of seven different domains from subunits of organelles assembled
by the chaperone/usher pathway has been determined so far, four pilin domains
and three lectin domains. They include PapK, PapE and PapGlectin from P pili,
FimHlectin and FimHpilin from type-1 pili, F17-Glectin from F17 fimbriae and Caf1
from the F1 capsule. All domains share a common Ig-fold, as was pointed out in a
recent article (Buts et al., 2003), and there is reason to believe that the Ig fold is
conserved in most subunits included in the chaperone/usher pathway organelles.
For the pilin domains the Ig-fold is easily identified but the lectins have evolved
almost beyond recognition, which is why their membership in the Ig fold family
was not initially recognised.

The beta strands belonging to the Ig-fold from all the structures can be
superimposed (Figure 3.15), but extra strands and loops are quite different, in
particular for the lectin domains.
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Figure 3.15. Stereo figure with all domains superimposed. The beta strands belonging
to the Ig-fold are coloured black and the variable loops are in grey.

From the structural superimposition it is possible to obtain a structure based
sequence alignment. To align the sequences without using 3D information turns
out to be impossible, since even the most closely related of the structures
determined (PapE and PapK) share only 16% sequence identity. In the sequence
alignment there is not one single amino acid that is 100% conserved in all seven
domains.

Conserved features

All structures determined share a pattern of strands: A, B, C, (C'), (C''), D, D',
D'', E, F and (G) (Figure 3.16). All pilin subunits lack strand G of the Ig fold
since they participate in DSE, and instead have an N-terminal Gdonor strand. The
structures seem to have a more or less pronounced division into three beta sheets,
two front sheets and one back sheet. The upper front sheet is made up from strand
A, B, E and the lower sheet from B, E, D, with some minor variations. Strands B
and E consequently participate in both sheets running the whole length of the front
side.  The back sheet consists of strand A, G/Gdonor, F, C, D'. The A strand is thus
part of both the upper front sheet and the back sheet. It starts hydrogen bonding to
the upper part of the front sheet, makes a switch in the middle and continues as
part of the back sheet. In Caf1 this switch comes late, and it is only the very last
part of strand A that forms the back sheet. In PapG lectin domain the situation is
the opposite, and the A strand is part of the back sheet only and no switch occurs.
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Figure 3.16. Two examples of the Ig-fold shared by the subunits. (A) FimH lectin
domain and (B) FimH pilin domain.

3.3.3 Aligning the pilin subunits

The pilin domains are more similar to each other than the lectin domains, possibly
because of the requirement that they must be able to participate in DSE. The four
pilin domain sequences were aligned based on the structural alignment. A profile
hidden Markov model (profile hmm) was built from the alignment with the online
tool NPS@ (Network Protein Sequence @nalysis) (Guermeur et al., 1999), and
the Swiss Prot database was searched with this profile in an hmm search, again
using NPS@. In the hmm search every sequence found matching the profile is
added to the previous alignment, and the whole process can be used iteratively.
This proved an efficient way of finding organelle subunits, and 96 sequences were
discovered and aligned, all of them from FGS chaperone systems.

Investigation of the sequence alignment together with the structural
superimposition revealed several features. First, the hydrophobic core is quite
conserved, and a hydrophobic pattern can be seen in the alignment of strands A,
B, C, D, D', E and F. The conserved hydrophobic core seem to be a general
feature in the IgFF, and is thought to be the reason why the Ig fold can be
maintained despite the low sequence similarity (Halaby et al., 1999). A large
majority of the FGS pilin subunits posses a conserved disulfide bridge linking
strand A to strand B, an unusual position for a disulfide bridge in the IgFF. This
disulfide bridge is not present in the FGL subunits, which is probably one of the
reasons as to why no FGL sequences were found in the hmm search.
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Handle-like features on the       b      -barrel

Typical for pilin subunits seems to be the topology of strands C', C'' and D', D''
(Figure). The C strand starts out being part of the back sheet, then loops out into a
beta hairpin consisting of C' and C'', the latter is also part of the lower front sheet.
This beta hairpin is matched by a similar loop in strand D. Strand D hydrogen
bonds to strand E in the lower front sheet, then loops out in two short beta strands
D' and D'', where D'' in some cases continues to take part of the back sheet. These
two loop structures create a handle-like feature on the surface of the Ig-beta barrel
(Figure 3.17).

Based on the structure of the FimC:FimH complex, a model for the pilus rod  has
been constructed (Choudhury et al., 1999). The two loops are on the outside of the
pilus model, where the C'-C" loop folds up towards the subunit above, coming
very close to the tip of the D'-D" loop of that subunit. This suggests a possible
stabilising function of these two loops in the final helical structure of the pilus.

Figure 3.17. Comparison of the C'-C" loop and the D'-D" loop in the three FGS
subunits.

The subunit acceptor cleft

The F strand is by far the most conserved strand, as earlier recognised (Hung et
al., 1996). The -14 Gly of the F strand is nearly 100% conserved, only two out of
96 sequences do not have a glycine at this position. Almost equally well
conserved is the penultimate Tyr. A distinct pattern of every second residue being
hydrophobic can be seen, and particularly position -6 is often a phenylalanine or
an equally bulky side chain while position -8 and –10 are often small, like an
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alanine or a valine. The deepest part of the acceptor cleft starts just before the F-
strand –6 residue, with one wall of the deep pocket defined by residue –8 and –10
(Figure 3.18).

Figure 3.18. Stereo figure of FimH donor strand cavity, with position –8 and –10
coloured black. Chaperone G1- and A1-strand shown as sticks.

This deep pocket is conserved among the subunits, and aligning the structures of
the three FGS pilin domains shows three structurally very conserved side chains
defining the bottom of the deep cleft (Val223, Leu225 and Ala254 in FimH), in
addition to the –8 and –10 positions (Figure 3.19). The FGS chaperone FimC has
two leucines (103 and 105) inserted into this part of the cleft and PapD has a
leucine and an isoleucine (103 and 105), both pairs superimposing very well in the
two chaperone structures. Leucine 103 is quite conserved in the FGS chaperone-
family (Hung et al., 1996), and is also the side chain making interactions with all
three conserved amino acids in the cleft (Figure 3.19). The two bulky chaperone
side chains also packs against the F-strand residues –8 and –10, which may be
why these two residues are required to be small.

One might speculate that the area comprised of the three conserved subunit
residues at the bottom of the deep cleft constitutes a nucleus for chaperone-subunit
interactions. The chaperone leucine 103 together with position 105 could be
imagined to interact with this subunit nucleus, which could catalyse folding of the
subunit around the chaperone scaffold.
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Figure 3.19. Three conserved residues at the bottom of the acceptor cleft coloured
black. The chaperone FimC G1 strand is coloured black, and FimD G1 strand grey. The
bulky side chains in position 103 and 105 are shown in sticks, as is position –8 and
–10 of the subunit F-strand.

3.3.4 The lectin domains

The Ig fold can still be recognised in the lectin domains, but the variation of the
fold is much greater. The lectin domains do not perform DSE, neither do they
have to take part in the packing into a pilus. The only structural demand on the
lectin domains, apart from the actual carbohydrate binding, is probably a size limit
for passage through the outer membrane channel created by the usher. The lectin
domains are accordingly very similar in width, just under 30Å, while the length
varies between 53Å for FimH, 58Å for F17-G and 64Å for PapG.

Less functional pressure naturally allows for a greater structural diversity and
evolution, which can be seen in the great variation of the lectin domain sequences
and structures. The domains can be superimposed (Figure 3.20) and a structural
based sequence alignment was made from the 3 lectin domain structures, but the
hmm profile built from this alignment picked up very few, closely related
sequences when used for searching the Swissprot database.

The lectin domains all contain a disulfide bridge, but the position is highly
diverse. FimHlectin has kept the disulfide bond between strand A and B seen in the
FGS pilin domains. F17-Glectin has a disulfide bridge linking strand C and D",
and the disulfide bridge of PapGlectin links the BC-loop to the D"E-loop.

The carbohydrate binding sites differ among the three lectins, both in shape and
position (Figure 3.17). The binding sites are all created by the domain top part
loops. The loop regions are the most variable part of a protein fold, and the easiest
part to adapt to a binding site for a particular receptor, which might be the reason
for the position of the binding sites.
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Figure 3.17. Stereo figure of the three lectin domains superimposed, with their ligands
shown in sticks. The Ig-fold beta strands are coloured black.
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4. Future perspectives

As is often the case as one project goes towards an end, many new issues are
raised. There are always loose ends to pick up and new questions to ask. This is a
selection of questions that I find of particular importance in this field of research,
and to which the future hopefully will provide an answer.

4.1 Structure and sequence comparison of the organelle subunits

A very large number of organelles assembled by the chaperone:usher pathway can
be found in nature. Only in the search done in this thesis 96 sequences were
discovered, and that is only of FGS organelle subunits. We present the first
structure of a FGL chaperone and subunit, and as more structures become known,
better sequence alignments can be made and additional organelle systems can be
identified. Even though all structures determined so far resemble each other, every
new structure will provide more information to the puzzle. Alignments of the pilin
domains give clues of DSE and the importance of the conserved hydrophobic core,
and comparison of the lectin domains answer questions about receptor specificity
and binding mechanism. More structures determined would therefore be of great
value in understanding the fine details of the various systems.

4.2 The usher

In this thesis a theory of the driving force of donor strand exchange is presented,
which is an significant step towards understanding assembly of the
chaperone:usher organelles. An important question remaining to be answered is the
role of the usher, and thereby the exact nature of the mechanisms behind DSE. The
usher is catalysing DSE, and a structure of the usher, possibly in complex with a
chaperone:subunit complex, would greatly help understanding the catalysing
mechanism.

4.3 Binding phenotypes of FimH

The variation in binding phenotypes of type-1 pili to different receptors and
surfaces is still not brought to a complete understanding. Binding studies to a
FimH mutant where the tyrosine gate, Tyr48 and Tyr137, is changed would be of
interest, both binding to FimH incorporated in a pilus and to the purified protein.
Also, 3D structures of FimH from the two strains of different phenotypes, CI#4
and F18, would confirm the theory that there is no structural difference in the
identified mannose-binding site, and that the underlying causes for the altered
binding pattern is to be found elsewhere.
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Valuable information would be whether FimH has one or more binding sites. It
would be relatively simple to study by NMR, and the answer would lead one step
further in the attempts to fully understand the mechanism of the binding.
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