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Abstract

Hallgren, J., 2004. The role of heparin in the activation of mast cell tryptase. Doctor’s
dissertation.
ISSN 1401-6257, ISBN 91-576-6676-8

Mast cells play an important role in our immune defense against bacteria and parasites
but are also key effector cells in various inflammatory diseases. They act by releasing
inflammatory mediators from intracellular granules. Tryptase, one of the most
abundant mast cell proteases, is stored in its active form and may therefore act
immediately after mast cell degranulation. In this thesis, the activation mechanism of
mast cell tryptase has been addressed. Further, the interaction between heparin and
tryptase has been thoroughly investigated.

We found that the mouse tryptase, mMCP-6, is critically dependent on heparin and
acidic pH for its activation. The critical role of heparin for tryptase activation indicated
that displacement of heparin might inactivate tryptase. Indeed, we proved that heparin
antagonists, protamine and Polybrene, were potent inhibitors of mMCP-6 and purified
human lung tryptase. A closer study of the structural requirements of heparin revealed
that its capacity to activate tryptase is dependent on size and high anionic charge
density. Further, these studies led to a novel finding in the demonstration of an active
tryptase monomer.

The dependence of mMCP-6 activation on acidic pH suggested that histidines were
involved in heparin binding. Site-directed mutagenesis of four selected histidines
(H35, H106, H108 and H238) demonstrated that H106, positioned closest to the
interface, contributed most to heparin binding, indicating that this region may be
particularly important. Generally, the single mutants displayed subtle defects
compared to when several mutations were combined, which produced large defects in
activation, tetramerization and heparin binding. The heparin-induced activation of
human -tryptase was dependent on the size and high anionic charge density of the
activator and closely resembled the structural requirements of mMCP-6 for its
interaction with heparin. Altogether, we showed that the mechanism for activation of
human -tryptase was very similar to that of mMCP-6. This indicates that the mouse
system is a highly relevant model for the analysis of the biological role of tryptase in
human mast cell-related diseases.

Keywords: mast cell mediator, serine protease, carbohydrate-protein interactions,
oligomerization, inflammation, allergy.

Authors address: Jenny Hallgren, Department of Molecular Biosciences, SLU, Box 575,
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To Mum and Dad

Success consists of going from failure to
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APCs Antigen presenting cells

BMMC Bone marrow derived mast cell

CGRP Calcitonin gene related peptide

CPA Carboxy peptidase A

CS Chondroitin sulfate

CSPG Chondroitin sulfate proteoglycan

DPPI Dipeptidyl peptidase

ECM Extracellular matrix

Heparin PG Heparin proteoglycan

Ig Immunoglobulin

IFN- Interferon-

LTs Leukotrienes

LPS Lipopolysaccharide

mMCP Mouse mast cell protease

MC Mast cell

MCT Mast cell type containing only tryptase

MCTC Mast cell type containing tryptase and chymase

MCP-1 Monocyte chemoattractant peptide

MIP-1 Macrophage inflammatory protein

MMP Matrix metallo protease

PAR-2 Proteinase activated receptor -2

PCA Passive cutaneous anaphylaxis

TLR Toll-like receptor

TNF-  Tumor necrosis factor-

VIP Vasoactive intestinal peptide
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INTRODUCTION

General overview

The immune system protects us from a variety of microbes ranging from viruses

and bacteria to parasites. The first line of defense is our skin, which protects us

from most potentially dangerous organisms. If a microbe succeeds in entering the

body, an immune response is necessary. The innate immune response (or non-

adaptive), predominant in early immune responses, is a non-specific way of

eliminating pathogens. If the innate immune system fails to eliminate the

pathogen, adaptive immunity takes over. This response is highly specific towards

one particular pathogen and after repeated encounters, the immune response

improves further- a memory of how to respond is created.

Mast cells (MCs) are cells of the immune system that are responsible for

attracting phagocytes and lymphocytes to a site of infection. Moreover, MCs have

a role in the initiation of adaptive immune responses and play an active role in

defense against certain pathogens. MCs and basophils are commonly referred to as

granulocytes. Basophils are cells of the immune system that share some functions

with MCs. Importantly, they share a common distinctive feature: their cytoplasms

are filled with granules packed with inflammatory mediators. They differ,

however, in that basophils circulate in the blood while MCs reside in mucosal

areas and in connective tissues. Although MCs are mostly beneficial by

participating in our defense against for example bacteria and parasites, under

certain circumstances they can cause considerable damage. Allergies, asthma and

autoimmune diseases such as rheumatoid arthritis and multiple sclerosis are MC-

mediated diseases that may be initiated if the immune system is activated due to

false recognition of either endogenous molecules or harmless exogenous

substances as threats. Irrespective of whether the role of the MC is beneficial or

harmful to the host, MCs are activated through different pathways, degranulate and

release inflammatory mediators, which cause the physiological effect. One of the

inflammatory mediators is an enzyme, which due to its trypsin-like activity is

named tryptase.

In the present study, we have characterized tryptase in terms of its mechanism of

activation and its interaction with heparin proteoglycan (heparin PG), another MC

mediator stored in the granules. We have mainly focused on the mouse tryptase,

mouse MC protease -6 (mMCP-6), but we have also investigated the

corresponding human -tryptase. An understanding of the fundamental

biochemical events leading to activation may be crucial in the fight against MC-

related diseases where tryptase is involved.
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Mast cells

Knowledge of MCs has greatly increased in recent years. However, they were first

described by Ehrlich in the late 19th century. Using aniline dyes, he saw how

certain cells were filled with granules. Ehrlich called them “mastzellen”, meaning

well fed cells (Ehrlich, 1878).

Figure 1. An intact MC and a degranulating MC stained with May-Grünwald Giemsa.
The negatively charged proteoglycans bind the dye and make the MC granules densely
colored.

Subtypes and heterogeneity

MCs originate in the bone marrow but mature in peripheral tissues (Galli, 1993).

Circulating human MC precursors are defined as being CD34
+
, c-kit

+
and CD13

+

cells (Kirshenbaum et al., 1999). Mouse MC precursors are poorly granulated and

are defined as Thy-1
lo
 and c-kit

hi
 cells (Rodewald et al., 1996). Intestinal mucosa

in adult mice have been found to constitute a peripheral pool of precursor MCs

(Guy-Grand et al., 1984). Mature MCs are distributed throughout the body, often

located strategically in tissues that interface the outside world. Different types of

MCs arise due to the influence of different microenvironments in various tissues.

In mice, two types of mature MCs have been described based on location and

granule content. The connective tissue type MC resides in connective tissues in

the skin and peritoneum, whereas the mucosal type is typically found in the

gastrointestinal mucosa. The connective tissue type MCs contain heparin

proteoglycan (heparin PG), high amounts of histamine and, in addition, the

proteases tryptase, chymase and carboxypeptidase A (CPA). In contrast, mucosal

MCs contain chondroitin sulfate proteoglycans (CSPG) and other types of

chymases but lack tryptase and CPA. Human MCs are classified according to their

granule contents. MCTs contain only tryptase and mostly resemble mucosal MCs

in their distribution pattern whereas MCTCs contain tryptase, chymase and CPA

and predominate in skin (Metcalfe, Baram & Mekori, 1997; Miller & Pemberton,

2002; Schwartz, 1994a).
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Table 1. MC heterogeneity in mouse and human.

Mouse Human

*Recent findings have suggested that mMCP-5 has elastase-like substrate specificity
(Karlson et al., 2003; Kunori et al., 2002).

Mechanisms of mast cell activation

IgE-mediated activation

The classical route of MC activation is through the adaptive immune response via

antibodies that bind to receptors on the MC surface. This is how MCs act both in

our immune defense towards parasites and in mediating hypersensitivity reactions

such as allergies and asthma. The response is initiated when an antigen e.g. a

pollen or a parasite enters the body. Firstly, parts of the antigen are taken up and

degraded by antigen presenting cells (APCs). These cells present antigenic

peptides on special cell-surface molecules referred to as MHC (major

histocompatibility complex) class II. In the presence of TH2 cytokines, the APCs

interact with CD4
+
 T cells and thereby induce them to proliferate. The newly

formed TH2 cells interact with B cells, which proliferate into plasma cells and

secrete specific antibodies of the immunoglobulin E (IgE) isotype. The MCs

become sensitized when IgE molecules bind to the high affinity Fc R1 receptors

on the MC membrane. Upon a second encounter, the antigen can bind directly to

the IgE-Fc R1 receptor complex. The binding of a multivalent antigen induces

cross-linking of the Fc RI receptor, which, via a signaling cascade involving

tyrosine phosphorylation and Ca
2+

 influx, causes MC degranulation. Besides the

release of pre-formed mediators, MC activation also induces production of de novo

synthesized lipid mediators and various cytokines that are released within hours of

activation.

IgE-independent mechanisms

Besides the common IgE-dependent mechanism there are several other pathways

that lead to MC activation. IgG antibodies can mediate MC activation through

low affinity IgG receptors. Mouse MCs express two isoforms of IgG receptors,

Fc RIIb and Fc RIII, while human MCs express the two isoforms, Fc RI and

Fc RII (Tkaczyk et al., 2004). Stimulation of Fc RI and Fc RIII induce MC

degranulation. However, simultaneous ligand binding of Fc RII and Fc RI result

in down-regulation of the degranulation initiated by Fc RI aggregation (Daeron &

Vivier, 1999). The biological significance of IgG receptors was demonstrated by

Connective tissue
type

Mucosal type MCT MCTC

Proteoglycan Heparin Chondroitin sulfate Heparin,
Chondroitin

sulfate

Heparin,
Chondroitin

sulfate
Tryptase mMCP-6, mMCP-7 + +
Chymase mMCP-4, mMCP-5* mMCP-1, mMCP-2 - +

CPA + - - +
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Plasma cell

Mast cell degranulation

Pollen
Parasite

Sensitized mast cell

IgE

T   cell B cell
H2

APC

CD4  T cell+

Figure 2. Mechanism for IgE-mediated MC activation.

IgE
-/-

 mice that despite a complete lack of IgE, show an anaphylactic reaction in

response to sensitization and allergen challenge (Oettgen et al., 1994).

MCs can be activated in a direct fashion in several other ways. For example,

recent studies have demonstrated MC activation by Toll-like receptors (TLRs).

The family of TLRs comprises cell-surface molecules that directly recognize

different pathogens. TLRs were first found in drosophila and TLR4 was identified

as the first mammalian TLR (Medzhitov, Preston-Hurlburt & Janeway, 1997).

MCs become activated when TLRs on the MC surface bind to pathogens. MCs

express TLR2, 4, 6, and 8 (Takeda, Kaisho & Akira, 2003). The identification of

the responsible gene of two mouse strains that failed to respond to

lipopolysaccharide (LPS) demonstrated that TLR4 recognizes LPS (Poltorak et

al., 1998; Qureshi et al., 1999). These results were later verified in a TLR4
-/-

strain (Hoshino et al., 1999). Bacteria-derived lipopeptides, peptidoglycan and the

yeast cell wall component, zymosan, are potent activators of TLR2 (Aliprantis et

al., 1999; Brightbill et al., 1999; Means et al., 1999; Schwandner et al., 1999).

However, TLR2 seems to require cooperation of other TLR family members e.g.

TLR1 and TLR6 for ligand recognition. Accordingly, heterodimers of

TLR2/TLR6 are suggested to mediate responses to peptidoglycan and zymosan

(Ozinsky et al., 2000). The natural activator(s) of TLR8 remain unknown.
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Complement factors such as C3a and C5a have long been known to induce MC

activation and were subsequently referred to as anaphylatoxins (Johnson, Hugli &

Muller-Eberhard, 1975). However, mucosal MCs do not express receptors for C3a

and C5a and fail to respond to complement factors (Mousli et al., 1994). In a

model of acute septic peritonitis, complement-mediated MC activation was

demonstrated to be crucial for bacterial clearance in vivo (Echtenacher, Mannel &

Hultner, 1996; Prodeus et al., 1997). Different cytokines and chemokines, e.g.

MIP-1  (macrophage inflammatory protein-1 ) and MCP-1 (monocyte

chemoattractant peptide-1), can also directly cause MC activation (Alam et al.,

1994). Moreover, MCs can be activated by cell-cell contact with activated T cells

(Baram et al., 2001). This cell-cell contact is mediated at least partly by ICAM-1

(intercellular adhesion molecule-1) and its ligand LFA-1 (leukocyte function-

associated antigen-1) (Inamura et al., 1998). Furthermore, the co-localization of

MCs with nerve terminals, the ability of neuropeptides to stimulate MC activation

and evidence that MC tryptase stimulates release of neuropeptides from neurons

has suggested a neurogenic control of MC activation (Bauer & Razin, 2000;

Steinhoff et al., 2000). The MC activating neuropeptides include substance P,

CGRP (calcitonin gene related peptide), VIP (vasoactive intestinal peptide) and

neurotensin (Church et al., 1989). In addition, it has been known for a long time

that MC degranulation can be induced by various basic compounds such as

compound 48/80, which has been extensively used as a research tool (Metcalfe,

Baram & Mekori, 1997).

Function

For many years, MCs were considered effector cells of anaphylactic reactions.

Recent evidence, however, suggests that MCs may also have a significant

beneficial role.

Role of Mast Cells in the immune response

Host defense against parasites

Parasites such as nematodes, which colonize the gastrointestinal tract, are highly

prevalent in the human population, particularly in tropical and sub-tropical areas of

the world. MC mastocytosis i.e. MC accumulation and proliferation, can be

triggered by nematode infection and is accompanied by eosinophilia and IgE

production (Love, Ogilvie & Mclaren, 1976; Maizels & Holland, 1998; Negrao-

Correa, 2001). These hallmarks of nematode infection are regulated by cytokines

derived from TH2 cells. TH2 cytokines include IL-4, IL-5, IL-9, IL-10 and IL-13 and

promote growth and differentiation of MCs and eosinophils as well as promoting

B-cells to produce Ig-E antibodies (Abbas, Murphy & Sher, 1996). MC-dependent

immune responses to parasites have been demonstrated by the use of IL-3
-/-

 mice,

which lack mature MCs. These mice show delayed expulsion of Strongyloides

venezuelensis (Lantz et al., 1998). Further, another study identified the mucosal

MC-specific chymase, mMCP-1, to be involved in immune responses to parasites.

mMCP-1
-/-

 mice show delayed expulsion of Trichinella spiralis compared to wild

type mice (Knight et al., 2000). Many studies have shown the importance of IgE
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in the response towards gastrointestinal nematode infection (Negrao-Correa, 2001).

Recently, IgE
-/-

 mice were used to demonstrate that IgE regulates MC responses to

Trichinella Spiralis. Interestingly, these mice have delayed worm expulsion in

combination with markedly diminished MC numbers and reduced serum levels of

mMCP-1 (Gurish et al., 2004).

Host defense against bacterial infections

MCs have a critical role in host defenses against certain bacteria. This was

demonstrated in vivo using MC-deficient mice (Kit
W

/Kit
W-v

), which showed

impaired clearance and survival to enterobacterial infections compared to wild type

or MC-reconstituted (Kit
W

/Kit
W-v

) mice (Malaviya et al., 1996), as well as in a

model of acute septic peritonitis (Echtenacher, Mannel & Hultner, 1996). The key

MC mediator that initiates the host response to bacterial infection is thought to be

preformed TNF-  (Tumor necrosis factor- ), which recruits neutrophils to the site

of infection. However, MC tryptase can also induce recruitment of neutrophils

(Huang et al., 2001; Huang et al., 1998). Furthermore, MCs have an important

role in the adaptive immune response to bacteria through MC-derived TNF-  that

goes to the lymph nodes and induces recruitment of circulating T cells (Mclachlan

et al., 2003). MCs also act directly in the immune defense through their capacity

to phagocytose and eliminate bacteria (Malaviya et al., 1994; Sher et al., 1979).

Role of mast cells in diseases

MCs contribute to the pathology of many diseases. It has been known for a long

time that MCs play a key role in inflammatory conditions such as asthma and

allergies. However, knowledge of MC involvement in other severe diseases has

emerged. Lately, MCs have been demonstrated to play a role in autoimmune

diseases such as multiple sclerosis and they have also been proposed to participate

in some types of cancers.

Allergies and asthma

Inflammatory conditions such as asthma and allergies are typically divided into

three effector phases: the early response or acute reaction that occurs within

minutes of allergen exposure, the late phase reaction that occurs within a few hours

of allergen exposure, and chronic allergic inflammation that is ongoing for days or

years. MCs are considered the primary cells responsible for acute allergic reactions

such as type I hypersensitivity reactions. For example, MC involvement was

shown in a mouse model of passive cutaneous anaphylaxis (PCA). In this study,

MC-deficient (Kit
W

/Kit
W-v

) mice were unable to express detectable PCA reactions

(Wershil et al., 1987). The MC mediators, histamine and leukotrienes are thought

to play a part because both antihistamines and antagonists to leukotrienes block

the early reaction (Roquet et al., 1997). There are conflicting data on the

significance of the role that MCs play in late phase reactions and chronic

inflammatory conditions. For example, when MC-deficient mice are sensitized

with ovalbumin (OVA) together with adjuvant they become “asthmatic”, however

when the same mice are sensitized with OVA without adjuvant they remain
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healthy (Williams & Galli, 2000). These results suggest that MCs may have the

key role or a non-essential role depending on the asthma model chosen.

Many different MC mediators may contribute to inflammatory conditions.

Histamine stimulates smooth muscle contraction and increases vascular

permeability but also increases mucus secretion in the lower airway (Hart, 2001).

Leukotrienes and prostaglandins mediate bronchoconstriction and vasodilatation.

In a mouse model of cutaneous late phase reactions, MCs were responsible for

essentially all the leukocyte infiltration after challenge with IgE and specific

antigen. TNF-  clearly is important to these reactions because approximately 50%

of the leukocyte infiltration was blocked using a neutralizing antibody to

recombinant TNF-  (Wershil et al., 1991). Other cytokines that MCs secrete,

such as IL-4, IL-5 and IL-13 participate in the inflammatory response (Brightling

et al., 2003). In addition, MC tryptase has been demonstrated to contribute to the

late phase reaction in atopic asthmatics (Krishna et al., 2001).

Autoimmune diseases

Recent studies have indicated that MCs are important for the onset of several

autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis

(RA). In a mouse model of MS named experimental allergic encephalomyelitis

(EAE), MC-deficient (Kit
W

/Kit
W-v

) mice were shown to have significantly reduced

symptoms of disease compared to wild type mice (Secor et a l . , 2000).

Subsequently, using MC-deficient mice reconstituted with Fc
-/-

, Fc RIII
-/-

 or

Fc RIIB
-/-

 bone marrow derived MCs (BMMCs) it was demonstrated that the

activating Fc receptors (Fc RI and Fc RIII) and the inhibitory receptor Fc RIIB

regulate EAE (Robbie-Ryan et al., 2003). Other indirect evidence has also

suggested MC involvement in MS. For example, MCs accumulate in sites of

demyelination in the brain and spinal cord (Ibrahim et al., 1996) and myelin can

be degraded by MC proteases (Johnson, Seeldrayers & Weiner, 1988). Increased

tryptase levels are found in the cerebrospinal fluid of MS patients (Rozniecki et

al., 1995). Further, analysis of MS lesions by microarray techniques showed a

high contribution of transcripts derived from MCs including genes for tryptase,

the TNF receptor and the high affinity IgE receptor (Lock et al., 2002).

Lately, the importance of MCs in the pathology of RA was demonstrated using

two strains of MC-deficient mice (Kitl
Sl
/ Kitl

Sl-d
 and Kit

W
/Kit

W-v
). In this study,

mice were injected with serum from the K/BxN mice, which caused wild type

mice to develop symptoms similar to RA. However, the MC deficient mice were

rescued from disease (Lee et al., 2002a). In patients suffering from RA, MCs have

been shown to accumulate in synovial tissues and fluid in response to a number of

MC chemoattractants e.g. SCF (stem cell factor) and TGF-  (transforming growth

factor - ) (Olsson, Ulfgren & Nilsson, 2001) . MCs have also been implicated in

other autoimmune diseases such as bullous pemphigoid (Chen et al., 2001) and

lupus nephritis (Lin, Gerth & Peng, 2004).
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Cancer

There is also some evidence for the involvement of MCs in cancer. MCs

accumulate around tumors such as basal-cell carcinoma lesions (Grimbaldeston et

al., 2000), invasive melanoma (Reed et al., 1996) and breast cancer (Kankkunen,

Harvima & Naukkarinen, 1997). In addition, MC mediators such as histamine,

tryptase, heparin and different cytokines/chemokines, particularly VEGF (vascular

endothelial growth factor), are implicated as either beneficial to the tumor, or in

some cases, detrimental (Theoharides & Conti, 2004).

Inflammatory mediators

MC mediators encompass both preformed mediators stored inside the granules in

their active forms and de novo synthesized mediators. The preformed mediators

include histamine, proteoglycans and proteases whereas leukotrienes and

prostaglandins are synthesized upon MC activation. Cytokines may be stored in

the granules as well as synthesized upon MC activation.

Leukotrienes and prostaglandins

Leukotrienes (LTs) and prostaglandins (PGs) are lipid mediators derived from

arachidonic acid. The LTs include LTA4, LTB4 and the cysteinyl LTs, LTC4,

LTD4 and LTE4. However, MCs predominately express cysteinyl LTs. Other cell

types such as basophils, eosinophils and macrophages are also important sources

of cysteinyl LTs. These act through two G-protein coupled receptors called

CysLT1 and CysLT2 (Kanaoka & Boyce, 2004). Originally, the cysteinyl LTs

were recognized for their broncho constricting effects (Dahlen et al., 1980) and

induction of increased venular permeability (Peck, Piper & Williams, 1981).

Recently, a number of additional LT functions have been proposed such as

leukocyte recruitment (Medeiros et al., 1999) and migration of dendritic cells

(Robbiani et al., 2000). LTs are also suggested to play a role in allergic diseases.

This was demonstrated in mice lacking cytosolic PLA2 (phospholipase A2), a key

enzyme for the biosynthesis of LTs. PLA2
-/-

 mice showed reduced bronchiolar

hyperreactivity after allergen challenge (Uozumi et al., 1997). Further studies have

suggested a role for LTs in asthmatic airway remodeling (Henderson et al., 2002)

and pulmonary inflammation and fibrosis (Beller et al., 2004; Nagase et al.,

2002). Recently, the FLAP (5-lipoxygenase-activating protein) gene, an early

enzyme in leukotriene biosynthesis, was identified as the first common gene

associated with a greater risk of stroke and heart attack (Helgadottir et al., 2004).

Most cell types express prostaglandins (PGD2, PGE2, PGF2 and PGI2).

However, MCs express predominantly PGD2, which can also be produced by

macrophages and dendritic cells. PGD2 exerts its effect through two cell surface

receptors, DP (prostaglandin receptor D) and CRTH2 (chemoattractant receptor-

homologous molecule expressed on TH2) (Kabashima & Narumiya, 2003). The

importance of PGD2 in inflammatory conditions was shown using DP
-/-

 in a

mouse model of asthma (Matsuoka et a l . , 2000). DP-deficient mice had

significantly reduced levels of TH2 cytokines such as IL-4, IL-5 and IL-13, and less

infiltration of lymphocytes and eosinophils. However, similar serum
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concentrations of total and specific IgE were detected, indicating that the primary

response was not affected. PGD2 is also associated with other inflammatory

diseases such as atopic dermatitis, allergic rhinitis and allergic conjunctivitis.

Cytokines

MCs are a source of many different cytokines. Preformed MC-derived cytokines,

e.g. TNF- , can be stored in the granules. However, most studies indicate up-

regulation of cytokine production after MC activation. The MC cytokines include

IL-3, IL-4, IL-5, IL-6, IL-10, IL-13 and TNF-  (Hart, 2001). Briefly, IL-3 plays

an important role for growth and differentiation of CD34
+
 progenitor cells into

MCs, basophils and dendritic cells (Martinez-Moczygemba & Huston, 2003).

Interestingly, IL-3 is needed for protective immunity in mice infected with the

nematode, Stronglyoides venezuelensis, through the induction of increased

numbers of tissue MCs and basophils (Lantz et al., 1998). IL-4 is a well-known

mediator of allergic asthma and belongs to the TH2 cytokines. The discovery of IL-

4 antagonists that prevent the development of allergic reactivity in mice

(Grunewald et al., 1998) has stimulated a search for new IL-4 antagonists to be

used as a treatment of allergic asthma (Mueller et al., 2002).

IL-5 is a typical TH2 cytokine, which stimulates eosinophil production and

activation (Martinez-Moczygemba & Huston, 2003). The significant role of IL-5

in asthma was demonstrated in IL-5-deficient mice which were rescued from

airway eosinophilia and airway hyper-reactivity after allergen challenge (Foster et

al., 1996). IL-6 has a wide range of different biological activities such as its role

as a growth factor for T cells and its capacity to induce the differentiation of

cytotoxic T cells, macrophages and osteoclasts. Moreover, IL-6 works in synergy

with IL-3 to induce proliferation of hematopoetic stem cells (Naka, Nishimoto &

Kishimoto, 2002). IL-6 overproduction may be responsible for the clinical

symptoms of RA, and antibodies towards IL-6 are currently being evaluated as a

new therapeutic strategy (Naka, Nishimoto & Kishimoto, 2002). IL-10 has both

pro-inflammatory and anti-inflammatory effects. The pro-inflammatory effects of

IL-10 predominate in innate immune reactions whereas the anti-inflammatory

effects are features of the adaptive immune response (Mocellin et al., 2003). IL-10

is also a maturation factor for human MC progenitors and posseses anti-tumor

properties. IL-13 is a key mediator of allergic asthma (Grunig et al., 1998; Wills-

Karp et al., 1998), but also plays a key role in host immunity to gastrointestinal

parasites (Mckenzie et al., 1998; Wynn, 2003). TNF-  is a multifunctional

cytokine, which mediates key roles in all stages of inflammation, infection and

anti-tumor responses (Palladino et al., 2003). For example, mice that overexpress

TNF-  develop RA-like symptoms (Douni et al., 1995). Since TNF-  induces

other pro-inflammatory cytokines and chemokines it is likely that TNF-  acts

both directly and indirectly in the development of RA (Van Den Berg, 2001). In

addition, preformed TNF-  is thought to initiate the host response to bacterial

infections (Echtenacher, Mannel & Hultner, 1996; Malaviya et al., 1996).

Accordingly, anti-TNF-  therapies for a variety of diseases are currently under

development (Palladino et al., 2003).
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MCs also express a variety of chemotactic cytokines or chemokines such as

MCP-1 (monocyte chemoattractant protein -1), RANTES and IL-8 (Ono et al.,

2003). MCP-1 and RANTES recruit monocytes/macrophages whereas IL-8 is a

neutrophil chemoattractant (Hart, 2001; Mukaida, Harada & Matsushima, 1998).

MCP-1 also attracts T cells and RANTES recruits eosinophils.

Histamine

Histamine is one of the most well studied MC mediators. It is stored in the MC

granules and is recognized as a central mediator of allergic diseases. Although

MCs are the main source, other cell types such as basophils, gastric

enterochromafin-like cells, and histaminergic nerves in the brain also produce

histamine. Besides these cell types, lymphocytes and monocytes may produce

histamine in minute quantities (Macglashan, 2003). The physiological effects of

histamine include bronchoconstriction, stimulation of smooth muscle contraction,

increased vascular permeability and increased mucus secretion in the lower airway

(Bachert, 2002). Histamine mediates its effect through at least four different G-

linked receptors (H1-H4). H1 and H2 are widely distributed while H3 expression

is restricted to the brain. H4 is found in the intestines and in hematopoetic tissues.

Because of the expression of H receptors on almost every cell, the role of

histamine at the cellular level is extremely complicated.

Histidine decarboxylase (HDC) catalyzes the synthesis of histamine from the

amino acid histidine. A knockout of HDC therefore produces an almost histamine-

free mouse although histamine may be taken up from food. MCs from HDC
-/-

mice have altered morphology and reduced granular content (Ohtsu et al., 2001).

Further, IL-3 differentiated BMMC from HDC
-/-

 mice show impaired

differentiation compared to those from wild type mice (Wiener et al., 2002). HDC
-

/-
 mice have been used in several studies to prove the effect of histamine. For

example, in a model of asthma, HDC
-/-

 mice exhibit strongly reduced antigen-

induced airway responses as well as reduced eosinophil infiltration and IgE levels

(Kozma et al., 2003). However, in this and other studies of different disease

models using the HDC knockouts, it is unclear if it is lack of histamine or the

presence of a reduced number of MCs, which contain less amounts of other

granule constituents, that causes the effect.

Proteoglycans

MCs express two types of proteoglycans, heparin PG and CSPG, in their

granules.

Heparin proteoglycan

Heparin PG is exclusively expressed by MCs. However, it closely resembles the

broadly expressed heparan sulfate proteoglycan (HSPG). Heparin PG consists of

glycosaminoglycans (GAGs) that are linked to the serglycin protein core. The

GAG chains consist of repeating disaccharide units of glucuronic acid or iduronic

acid and glucosamine. The GAG chain is O-linked to serglycin through a

tetrasaccharide linker (Xyl-Gal-Gal-GlcA). A key enzyme in the biosynthetic
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pathway leading to the production of the GAG chain is the N-deacetylase/N-

sulfotransferase (NDST), which is necessary for subsequent modifications such as

C5-epimerization, 2-O-sulfation, 6-O-sulfation and 3-O-sulfation. A heparin

disaccharide contains on average 2.7 sulfate groups that give rise to the unusually

high negative charge density as well as much of the heterogeneity of the GAG

structure (Capila & Linhardt, 2002). There are four isoforms of NDST. NDST-1 is

expressed ubiquitously whereas NDST-2 is expressed exclusively in MCs. NDST-

3 and -4 are expressed during embryonic development.

Heparin was first discovered in liver extracts on account of its anti-coagulant

properties in the beginning of the 20th century (heparin; from hepatic origin). It is

primarily known for its use in anti-thrombosis therapy. Later, it was found that

the anti-coagulant activity was due to a specific highly sulfated pentasaccharide in

the heparin GAGs that binds to antithrombin and thereby induces an allosteric

change that increases binding of thrombin and factor Xa (Olson, Bjork & Bock,

2002). As most heparin is located in MC granules and antithrombin is a serum

protein, it is likely that HSPGs, which are found at the plasma membrane of

endothelial cells lining blood vessels, bind to anti-thrombin in vivo (Marcum et

al., 1986). A number of other heparin-binding proteins have been described, such

as FGFs (fibroblast growth factors), annexins, chemokines and adhesion proteins.

For many of these, HSPG is thought to be the endogenous ligand (Capila &

Linhardt, 2002).
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Figure 3. Heparin proteoglycan. The close up shows the structure of the heparin chains.
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The main function of heparin PGs in MC granules is to work as a storage

scaffold for other MC granule components. This was demonstrated in two separate

studies using NDST-2 knockout mice (Forsberg et al., 1999; Humphries et al.,

1999). The NDST-2
-/-

 mice showed a drastic reduction in various granule proteases

as well as histamine although the mRNA levels were unchanged. Further,

morphology of the MCs was distorted, with the cells developing large empty

vacuoles. Heparin PG, with its high negative charge, possibly binds the positively

charged granule compounds, neutralizes their charge and packs them efficiently in

the MC granules. As proteases are stored in MC granules in an active form,

packing with heparin PG may also prevent undesired proteolytic cleavage of the

granule components. Further, heparin PG may also play a protective role after

degranulation. For example, MC chymase remains in complex with heparin PG

after degranulation and is protected from plasma protease inhibitors (Pejler &

Berg, 1995). Moreover, heparin PG also helps chymase in a more sophisticated

way by binding to other heparin-binding proteins, thereby potentiating recruitment

of substrate (Pejler & Sadler, 1999). Other granule components, for example

histamine, bind to heparin PG in the acidic granule microenvironment (~ pH 5.5)

because of the positively charged histidine residues (pKa ~ 6.5). After exocytosis,

the higher pH in the extracellular milieu causes deprotonation and dissociation

from heparin PG. Furthermore, heparin PG may also be involved in the

activation/processing of MC proteases such as CPA (Henningsson et al., 2002)

and tryptase (Sakai, Ren & Schwartz, 1996).

Chondroitin sulfate PG

Murine mucosal MCs contain exclusively CSPG whereas human MCs contain

both heparin PG and CSPG at a ratio of about 2:1 (Stevens et al. , 1988).

Chondroitin sulfate (CS) is linked to the same core protein (serglycin) as heparin.

Further, CS consists of repeating units of glucuronic acid (GlcUA) and

galactosamine (GalNAc) where the GalNAc can be 4-O or 6-O sulfated (Kolset,

Prydz & Pejler, 2004).The CS type found in MCs is referred to as CS-E and can

be sulfated at both positions. However, CSPG is normally not as negatively

charged as heparin PG. It has been demonstrated that CSPG may compensate for

the lack of heparin PG under certain circumstances. In fact, BMMCs from NDST-

2
-/-

 mice synthesize CSPGs that are as equally negatively charged as heparin PGs

(Henningsson et al., 2002).
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Proteases

All MC proteases are stored in their active form inside MC granules and have a

variably functional relationship to heparin PG. The MC proteases include

chymase, CPA and tryptase.

Chymase

Chymases are chymotrypsin-like serine proteases uniquely expressed by MCs.

They are further categorized into - and -chymases based on structure. In

humans, there is only one -chymase whereas in mice there are five: one -

chymase, mMCP-5 and four -chymases, mMCP-1, mMCP-2, mMCP-4 and the

newly discovered mMCP-9. mMCP-9 is implicated in inflammation of the

jejunum during helminth infections and tissue remodeling of the uterus during

pregnancy (Friend et al., 2000; Hunt et al., 1997). As mentioned earlier, different

MC populations selectively express the different chymases. Thus, mucosal MCs

preferentially express mMCP-1 and -2 whereas connective tissue MCs

predominantly express mMCP-4 and -5. Recently, it was found that mMCP-5 has

elastase-like activity rather than chymotrypsin-like activity (Karlson et al., 2003;

Kunori et al., 2002). This implies that the functional homologue of human

chymase must be found among the -chymases. Accordingly, it was demonstrated

that the -chymase, mMCP-4, is responsible for the chymotrypsin-like activity in

peritoneum and ear-tissue, whereas human chymase is widely distributed

(Tchougounova, Pejler & Abrink, 2003). An important feature of the connective

tissue MC chymases is their interactions with heparin PG. In the MC granules,

they are stored in complex with each other and even after MC degranulation the

chymases remain associated with heparin PG. Outside the MC, heparin PG binds

potential substrates for chymase and thereby facilitates the cleavage of these

substrates (Pejler & Sadler, 1999). Heparin PG also protects extracellular chymase

from protease inhibitors (Pejler & Berg, 1995). However, CSPG-containing

mucosal MCs contain chymases that may be constitutively secreted (Brown et al.,

2003) and less dependent on negatively charged PGs.

Chymases play an important role in various inflammatory conditions. For

example, chymase attracts neutrophils and eosinophils (He & Walls, 1998;

Watanabe, Miura & Fukuda, 2002) and may have a role in lung fibrosis

(Tomimori et al., 2003). Moreover, chymase has been demonstrated to activate

TGF- , which is a profibrotic cytokine (Lindstedt et al., 2001). Chymases are also

involved in atherosclerotic diseases through several different mechanisms. These

include inhibition of smooth muscle cell (SMC) mediated collagen synthesis

(Leskinen, Kovanen & Lindstedt, 2003), degradation of fibronectin which is

necessary for SMC adhesion and survival (Leskinen et al., 2003), activation of

MMP-1 (matrix metallo protease –1) and MMP-9, which degrade the collagen

matrix (Suzuki et al., 1995), and inactivation of TIMP (tissue inhibitor of

metalloprotease) (Frank et al., 2001). Further, chymases (  and ) can convert

angiotensin I (AngI) to angiotensin II (AngII), the latter being a peptide with

important physiological effects such as vasoconstriction and increased blood

pressure, although  chymase may also function in degrading angiotensins

(Dell'italia & Husain, 2002). The most important enzyme for AngII formation in
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the blood is angiotensin-converting enzyme (ACE). In contrast, chymase may be

the predominant AngI converter in tissues (Wei et al., 2002). In a recent study, it

was found that mMCP-4 and CPA cooperate in the formation and degradation of

AngII (Lundequist et al., 2004). In addition, the mucosal MC type chymase

mMCP-1 is involved in defense against gastrointestinal nematode infections

(Knight et al., 2000).

Carboxypeptidase A

CPA is a monomeric Zn
2+

-dependent exoprotease exclusively produced by MCs.

CPA is only distantly related to the other MC proteases. However, it is highly

similar to pancreatic carboxypeptidases (Reynolds et al., 1989). CPA is stored in

the MC granules in complex with heparin PG. Human CPA is found in the class

of human MCs denoted MCCT whereas mouse CPA seems to be restricted to the

expression by connective tissue type MCs (Irani et al., 1991; Mcneil et al., 1992).

CPA is transported into the MC granules with its 94 amino acid long activation

peptide attached. In the MC granule, pro-CPA is processed into mature CPA

(Rath-Wolfson, 2001). The processing of pro-CPA was demonstrated to be

critically dependent on heparin (Henningsson et al., 2002). A recent study has

suggested that cathepsin E may process pro-CPA inside the MC granules (F.

Henningsson; personal communication). There is also some evidence that mCPA

may be physically associated to mMCP-5 in the granules. It was demonstrated

that mMCP-5
-/-

 mice cannot store CPA in their granules (Stevens et al., 1996).

Accordingly, it was shown that mCPA and mMCP-5 levels were equally increased

in cathepsin -C and -S knockout mice (Henningsson et al., 2003). Further,

chymase and CPA have been shown to be located in the same macromolecular

complex with heparin and are located separately from tryptase in the MC granules

(Goldstein et al., 1992). The biological function of CPA has remained largely

unknown but recently it was demonstrated that CPA may have a role in

extravascular formation of AngII (Lundequist et al., 2004).
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Tryptase

In 1960, a trypsin-like activity was found in MCs (Glenner & Cohen, 1960).

Since then, much knowledge about MC tryptase has been gathered but little is

still known about its true biological function. The predominant form of tryptase is

a granular protease stored in its active form and therefore able to act immediately

after MC degranulation. Besides the tryptases found in human and mice, several

different species such as dog, rat, sheep, cow and gerbil have been shown to

produce different types of functional tryptases.

Tryptase-betaIII  (NP_077078)
Tryptase-betaII  (P20231)
Tryptase-betaI  (Q15661)
Tryptase-alphaII  (AAG35695)
Tryptase-alphaI  (P15157)
Tryptase-deltaI  (AAH69143) 
Tryptase-deltaII  (AAG35694)
mMCP-6  (P21845)
mMCP-7  (Q02844)
mTMT  (AAF03698)

Tryptase-gammaII  (AF7658)
Tryptase-gammaI  (Q9NRR2)

mMCP-1  (P11034)
mMCP-4  (P21812)
mMCP-9  (NP_034912)
mMCP-2  (NP_032597)
Human chymase  (P23946)
mMCP-5  (P21844)

Figure 4. A phylogenetic tree showing the similarity between human and mouse
tryptases and chymases. The clustal method with pairwise alignment (DNASTAR) was

used to obtain the phylogenetic tree. NCBI protein accession numbers are indicated

within brackets.

Human tryptase

Several human MC tryptases are known today. They include -, -, -, -tryptase

and TMT (transmembrane tryptase). Tryptase is also expressed by human

basophils. However, mean levels of tryptase in basophils are less than 1% of those

found in MCs (Jogie-Brahim et al., 2004).

-tryptase

There are two very similar -tryptases identified, I (Miller, Westin & Schwartz,

1989) and II (Pallaoro et al., 1999). Human -tryptase was previously

considered unable to be processed into its mature form (Sakai, Ren & Schwartz,

1996). In contrast, recombinant -tryptase was shown to be assembled into an

active tetramer, although the activity was extremely low compared to -tryptase

(Huang et al., 1999). Site-directed mutagenesis of Asp216 into Gly, which is the

corresponding amino acid in -tryptase, demonstrated that the difference in activity

was partly attributed to this amino acid substitution (Huang et al., 1999). Further,

the crystal structure of -tryptase revealed that the substrate binding region
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(Ser214-Gly219) is kinked in the -tryptase tetramer, which makes substrate

binding and processing unproductive (Marquardt et al., 2002). -tryptase seems to

be the predominant form of tryptase in serum under normal conditions (Schwartz

et al., 1995). It was suggested that due to the differences in the signal peptide, -

tryptase is continuously secreted rather than directed to the MC granules (Sakai,

Ren & Schwartz, 1996). Later, it was found that precursor forms of both - and -

tryptase are secreted spontaneously (Schwartz et al., 2003). The discovery that the

 and I alleles compete at one locus suggested that there may be individuals with

a complete lack of -tryptase (Caughey, 2002). Surprisingly, -tryptase deficiency

is very common; about 29% of the human population lack -tryptase (Soto et al.,

2002).

-tryptase

The three -tryptases identified are almost identical. These are I, II and III

(Miller, Moxley & Schwartz, 1990; Vanderslice et al., 1990). I and III differ

from II in that Asn104 is substituted to a Lys in II. As a result, I and III are

glycosylated whereas II is unglycosylated at this position. I and II differ in

only this amino acid. However, III is more significantly different from I and II

in that positions 21-23 consist of RDR in contrast to HGP (Fiorucci & Ascoli,

2004). The -tryptases preferentially cleave substrates with Lys or Arg in the P1

and P3 positions. For P2 and P4 positions, they have a much broader specificity

with some preference for proline (Harris et al., 2001; Huang et al., 2001).

Increased -tryptase can be found in serum during extreme inflammatory

conditions such as systemic anaphylaxis (Schwartz et al., 1995).

-tryptase

There are two different -tryptases, I and II (Caughey et al., 2000). In contrast

to - and - tryptases, -tryptases contain an extended hydrophobic C-terminal

domain followed by a small cytoplasmic tail, that makes anchoring to plasma

membranes possible. Another transmembrane tryptase (TMT) may be identical to

I-tryptase or at least very similar (98-99%) (Wong et al., 2002; Wong et al.,

1999). Interestingly, it was demonstrated that TMT migrates to the plasma

membrane upon MC degranulation (Wong et a l . , 2002). When TMT is

enzymatically activated it retains its propeptide and forms a disulfide bond linking

two TMT chains together. Further, when recombinant TMT is injected into mice

trachea, airway hyperresponsiveness (AHR) is induced in combination with

increased levels of IL-13 (Wong et al., 2002).

-tryptase

Finally, there are two -tryptases, I and II (Wang et al., 2002). These were

previously referred to as mMCP-7-like (I and II), due to homology between their

fifth exon and mMCP-7 (Pallaoro et al., 1999). The I- and II-tryptases differ in

only one amino acid. -tryptase contains a premature stop-codon that results in a

shorter mature protein that is likely to alter the substrate specificity significantly,

although the catalytic triad is intact (Wang et al., 2002). Immunohistochemical
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analysis has shown that -tryptase is expressed in MCs from tissues such as

colon, lung and heart (Wang et al., 2002).

Mouse tryptase

Four murine MC tryptases have been identified to date. These are mMCP-6,

mMCP-7, mTMT (mouse transmembrane tryptase) and mMCP-11. All MC

tryptases have been localized to mouse chromosome 17A3.3 (Wong et al., 2004).

mMCP-6

mMCP-6 is exclusively expressed in connective tissue type MCs (Reynolds et al.,

1990). It is the mouse tryptase that is most closely related to human -tryptase,

with 78% sequence identity. mMCP-6 and -7 are homologous enzymes with 71%

sequence identity. Phage-display experiments to define the substrate specificity

revealed that mMCP-6 prefers Lys to Arg in the P1 position and has some

preference for Pro in the P4 position, closely resembling the substrate specificity

of human -tryptase (Huang et al., 1998). Up to an hour after MC degranulation,

mMCP-6 can be found in the adjacent ECM but not in circulation (Ghildyal et

al., 1996). This indicates that mMCP-6 exerts its effect locally.

mMCP-7

mMCP-7 was first discovered in early stages of BMMC cultures (Mcneil et al.,

1992). Later, expression was found in ear and skin connective tissues of adult

mice (Stevens et al., 1994). mMCP-7 was demonstrated to preferentially cleave

substrates with Arg in the P1 position and Ser or Thr in the P2 position. Further,

mMCP-7 shows an unusually high negative net charge at neutral pH (-10). In

contrast to mMCP-6, mMCP-7 can be detected in plasma as early as 20 minutes

after MC degranulation, probably due to lack of serglycin proteoglycan-mediated

retention (Ghildyal et al., 1996). This may be explained by histidines in mMCP-7

that become neutral extracellularly and no longer mediate heparin PG binding

(Matsumoto et al., 1995).

mTMT

Mouse transmembrane tryptase (mTMT), similar to human I-tryptase/human

TMT, was identified by mapping the mouse tryptase locus to chromosome 17

(Wong et al., 1999). mTMT has a C-terminal hydrophobic extension similar to

I-tryptase and probably has similar properties.

mMCP-11

mMCP-11 was recently discovered in BMMCs and in the V3 and C57.1 cell lines

(Wong et al., 2004). As the level of mMCP-11 transcripts in BMMCs decrease

dramatically after 3 weeks of culture, this protease has long remained unidentified.

mMCP-11 has 52% and 54% sequence identity to mMCP-6 and -7, respectively.
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Structure and stability

It was early discovered that tryptase is active as a tetramer (Schwartz, Lewis &

Austen, 1981). Gel electrophoresis and gelfiltration studies showed that the

tryptase tetramer has an apparent molecular mass of approximately 140 kDa, built

from four identical subunits of 30-36 kDa. The active tryptase tetramer is

stabilized by heparin PG and other polymers with high anionic charge density

(Alter et al., 1987; Schwartz & Bradford, 1986). In the absence of heparin, the

tryptase tetramer is dissociated into inactive monomers. However, the stability of

free tryptase tetramers can be increased at high NaCl concentrations. On the other

hand, increasing NaCl concentrations in the presence of heparin-stabilized tryptase

has the opposite effect due to dissociation of the tetramer (Alter et al., 1987).

Spontaneous tryptase inactivation was discovered to be associated with

structural changes that could be reversed by heparin or dextran sulfate (Schechter et

al., 1995). Further, an inactive tetramer intermediate was shown to be re-activable

by the addition of heparin (Addington & Johnson, 1996). In a subsequent study,

the dissociation of the tetramer was suggested to occur in three steps (Selwood,

Mccaslin & Schechter, 1998). The first reversible step involved conformational

changes into an inactive destabilized tetramer followed by a second reversible step

in which dissociation of the destabilized tetramer occurred. In a third and final

slow, irreversible step, the inactive monomers were unable to be reactivated. The

same authors later demonstrated that recombinant human II-tryptase displays

stability properties similar to the purified skin tryptase described above (Selwood

et al., 2002). In contrast, another study concluded that the dissociation from active

tetramer into inactive monomers occurs immediately at the beginning of the

inactivation process (Kozik, Potempa & Travis, 1998). In yet another study, it

was demonstrated that when dissociation of tryptase into inactive monomers has

occurred, addition of heparin at neutral pH failed to reverse the process. However,

complete reactivation occurred at acidic pH even without addition of heparin (Ren,

Sakai & Schwartz, 1998). It should be noted that almost all of these studies were

performed with purified lung or skin tryptase. The occurrence of several different

tryptases and the possibility of heterotypic formation of tetramers may explain

some of the discrepancies between the investigations (Huang et al., 2000; Pallaoro

et al., 1999).

Several attempts have been made to predict the tetramer structure. One model,

based on a crystal structure of bovine trypsin (~ 40% identity to -tryptase)

suggested that a group of conserved tryptophans and a proline-rich region could be

responsible for tetramer formation and it was speculated that 10-13 histidines on

the model surface might be involved in heparin-binding (Johnson & Barton,

1992). In 1998, the crystal structure of human II-tryptase revealed a fascinating

tetramer structure were the monomer units are positioned at the corners of a flat

rectangular frame (Pereira et al., 1998). Each monomer has its active site facing a

continuous pore in the middle of the tetramer. Access to the wider central cavity is

limited due to a loop that projects from each of the monomers. The monomer

units have two different interfaces with its neighbors, one consisting of

hydrophobic and polar interactions and the other with only hydrophobic

interactions. The unique tetramer structure can explain earlier observations such as
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the inability of endogenous protease inhibitors to inhibit tryptase and the

relatively limited number of protein substrates (Alter et al., 1990).

Figure 5. The structure of human -tryptase. Adapted from Sommerhoff et al. (Pereira et
al., 1998).

Besides the active tryptase tetramer, the existence of an active tryptase monomer

has been suggested (Addington & Johnson, 1996). An active tryptase monomer

would explain the observations that tryptase cleaves large substrates that cannot fit

into the small central pore of the tetramer. Recently, the formation of an active -

tryptase monomer has been verified (Fajardo & Pejler, 2003a; Fukuoka &

Schwartz, 2004). The first study demonstrated that active monomers could be

obtained from human -tryptase tetramers. It was shown that this process occurred

at neutral pH and low heparin concentrations at body temperature, suggesting that

active monomers are formed in vivo after MC degranulation (Fajardo & Pejler,

2003a). In the second study, the formation of active -tryptase from inactive

monomers was demonstrated to occur at acidic pH in the presence of heparin,

suggesting an intermediate step in the formation of active tetramers (Fukuoka &

Schwartz, 2004). Accordingly, the active -tryptase monomers represent short-

lived states that may occur both inside the MC granule before tetramer formation

and extracellularly before inactivation.
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Biological function

Tryptase is the most abundant mediator stored in MC granules and plays a pivotal

role in several inflammatory conditions.

Proinflammatory properties

Tryptase levels in bronchiolar lavage fluid increase with clinical conditions such as

anaphylaxis and bronchial asthma (Jarjour et al., 1991; Schwartz, 1994b). Further,

tryptase injected into mouse peritoneum or the tracheas of the lung induces

neutrophil infiltration in mouse (He, Peng & Walls, 1997; Huang et al., 1998)

and human (Huang et al., 2001). The proinflammatory properties of tryptase may

be explained by its role in regulating endothelial cell proliferation by inducing IL-

1 and IL-8 mRNA expression and selective IL-8 release (Compton et al., 1998)

that can promote neutrophil accumulation (Smart & Casale, 1994). Moreover,

inhalation of tryptase causes bronchoconstriction in sheep (Molinari et al., 1996).

Biological substrates

Tryptase has been suggested to be involved in a variety of biological processes

through cleavage of different substrates. Fibrinogen was one of the first recognized

tryptase substrates, suggesting anticoagulant activity (Schwartz et al., 1985). It

has also been demonstrated that tryptase increases vascular permeability through

activation of prekallikrin and production of bradykinin from kininogens (Imamura

et al., 1996). In addition, tryptase may have a role in artherosclerosis by degrading

HDL (high density lipoprotein) and thereby hindering the removal of cholesterol

by HDLs (Lee et al., 2002b). Other studies describe the ability of tryptase to

degrade neuropeptides such as VIP (vasoactive intestinal peptide) (Caughey et al.,

1988), PHM (peptide histidine-methionine) and CGRP (calcitonine gene-related

peptide) (Tam & Caughey, 1990). The degradation of these mediators of

bronchodilation may lead to increased bronchial responsiveness and contribute to

the involvement of tryptase in asthma. Another important feature of asthma is

subepithelial fibrosis. Tryptase may contribute to this process through its role as a

mitogen for smooth muscle cells and lung fibroblasts. The mechanism behind this

effect is debatable; one study shows that the mitogenic effects of tryptase are via

non-proteolytic actions, because irreversible inhibition of the activity of tryptase

did not abolish the mitogenic effect (Brown et al., 2002). Others have suggested

that the ability of tryptase to cleave and activate proteinase activated receptor-2

(PAR-2) is responsible for the mitogenic effect (Akers et al., 2000; Berger et al.,

2001).

PAR-2 belongs to a family of four G-protein coupled receptors (PAR-(1-4))

involved in cell signaling. PAR activation occurs when a part of its extracellular

N-terminal is cleaved, exposing a new N-terminal that auto-activates the receptor

(Dery et al., 1998; Schmidlin & Bunnett, 2001). PAR-2 activation may have a

broncho-protective role in the lungs, mediated by epithelial trypsin (Cocks et al.,

1999). However, most reports demonstrate a pro-inflammatory response after

PAR-2 activation. For example, tryptase was demonstrated to induce

inflammation by activation of PAR-2 on sensory nerves, which, upon stimulation,
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release proinflammatory neuropeptides such as CGRP and substance P (Steinhoff

et al., 2000). The localization of PAR-2 on MCs suggests an amplification of MC

degranulation (D'andrea, Rogahn & Andrade-Gordon, 2000). Moreover,

neuropeptides can also stimulate MC degranulation (Church et al., 1989). Another

indication of the role of PAR-2 in inflammation is that LPS and pro-inflammatory

cytokines, including IL-1 and TNF- , upregulate PAR-2 mRNA (Nystedt,

Ramakrishnan & Sundelin, 1996). Further, PAR-2
-/-

 mice demonstrate a delayed

onset of inflammation with a defect in P-selectin-mediated leukocyte rolling

(Lindner et al., 2000). Another study using PAR2
-/-

 mice demonstrates that

stimulation of PAR-2 contributes to allergic inflammation of the airways by

mediating hyperreactivity and infiltration of eosinophils (Schmidlin et al., 2002).

Furthermore, increased tryptase levels are found in inflammatory bowel diseases

such as Crohn’s disease (He, 2004). Accordingly, PAR-2 activation was found to

induce intestinal inflammation, as indicated by granulocyte infiltration, thickening

of the bowel wall and tissue damage (Cenac et a l . , 2002). Lately, PAR-2

activation by tryptase has been suggested to play a role in a number of different

diseases such as contact dermatitis (Seeliger et al., 2003) and arthritis (Ferrell et

al., 2003).

Activation of PAR-2 also involves release of MMP-9 from airway epithelial

cells, which can have a role in tissue-remodeling in asthma (Vliagoftis et al.,

2000). However, tryptase can also activate pro-MMP-3 (Gruber et al., 1989). Once

activated, MMP-3 can degrade different ECM components such as proteoglycans,

fibronectin and laminin, a feature of inflammatory diseases such as rheumatoid

arthritis. In addition, tryptase can directly cleave fibronectin (Lohi, Harvima &

Keski-Oja, 1992) and gelatin (Fajardo & Pejler, 2003b). Thus, tryptase has a role

in tissue remodeling and promotes angiogenesis (Blair et al., 1997). Angiogenesis

is crucial to many pathological conditions including tumor growth. Tryptase may

therefore play a role in these conditions. Recently, a correlation between the extent

of angiogenesis and tryptase-positive neurons and microvessels was found in a

mouse model of duchenne muscular dystrophy, an X-linked genetic disorder

characterized by muscle degeneration and brain damage (Nico et al., 2004).
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Tryptase inhibitors

The search for selective, high affinity tryptase inhibitors has been intense in recent

years. The primary goal has been the discovery of drugs for treatment of tryptase-

mediated diseases but also for the ability of selective inhibitors to determine the

true physiological role of tryptase.

One of the first tryptase inhibitors was APC-366, a peptide-based inhibitor,

which, despite problems of specificity underwent clinical trials as a treatment for

asthma. It was shown that APC-366 administered to allergic sheep significantly

inhibited late-phase responses (Clark et al., 1995). Immediate cutaneous responses

could be partly inhibited with APC-366 (Molinari et al., 1995). Lately, APC-366

was demonstrated to significantly reduce acute airway obstruction in a pig model

of asthma (Sylvin et al., 2002). Another early inhibitor was BABIM, a

benzamidine derivative that showed effects similar to APC-366 when administered

to allergic sheep (Clark et al., 1995). Later it was found that BABIM acts via a

Zn
2+ 

that is tetrahedrally coordinated between two chelating nitrogens of BABIM

and with the catalytic Ser195 and His57 residues in tryptase (Katz et al., 1998).

The crystal structure of human II-tryptase revealed the unique organization of

the tryptase tetramer and the presence of an acidic surface loop in the active site

region suggested that fairly simple dibasic inhibitors could be designed (Pereira et

al., 1998; Rice et al., 1998). AMG-126737 is a selective dibasic tryptase inhibitor

(Ki = 90nM). It blocked the development of airway hyperresponsiveness in

allergen-challenged guinea pigs as well as inhibiting both early and late phase

bronchoconstriction in a sheep model of asthma (Wright et al., 1999). MOL 6131

is another selective dibasic tryptase inhibitor (Ki = 45 nM), which has anti-

inflammatory effects in a mouse model of asthma (Oh et al., 2002). Furthermore,

BMS-262084 is a guanidine-based dibasic tryptase inhibitor (IC50 = 4 nM),

which was demonstrated to  efficiently prevent allergen-induced

bronchoconstriction and infiltration of inflammatory cells to the lung in guinea

pig models (Sutton et al., 2002). Since then, the same group has developed the

guanidine concept further to find compounds that are more selective (Slusarchyk et

al., 2002). Recently, they reported very potent (IC50 down to 1.8 nM) and highly

selective non-guanidine azetidinone based inhibitors of tryptase (Bisacchi et al.,

2004). The use of tryptase inhibitors has been adapted to the treatment of

inflammatory bowel diseases. APC 2059, another dibasic tryptase inhibitor that is

highly specific and selective, was used in a phase II study of ulcerative colitis

(Tremaine et al., 2002). Fifty-six adults received APC 2059 daily for 28 days. It

was concluded that APC 2059 was safe and half of the patients showed clinical

improvement. In addition, some of them showed complete remission. A

monobasic inhibitor called gabexate mesylate, which is therapeutically used in

pancreatitis, has also been demonstrated to selectively inhibit human MC tryptase

with high potency (Ki=3.4 nM) (Erbaa et al., 2001). In a recent study, gabexate

mesylate and nafamostat mesilate, which is a structurally related compound, were

shown to suppress pulmonary dysfunction in a rat model (Sendo et al., 2003).
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LDTI (leech derived tryptase inhibitor), a small protein of 46 amino acids

isolated from the leech Hirudo medicinalis, was until recently considered the only

protein active site inhibitor of tetrameric -tryptase (Sommerhoff et al., 1994).

LDTI interacts with the same acidic loop as dibasic inhibitors but is non-selective

and inhibits other related proteases such as trypsin. Interestingly, SERPINB6 is a

newly discovered -tryptase protein inhibitor that belongs to a family of

intracellular serpins (serine protease inhibitors). Serpins have a so-called reactive

loop region (RSL) that determines the specificity of the serpin. This RSL is

cleaved by the protease and thereby the serpin becomes covalently linked to the

protease. Meanwhile, the protease becomes inactivated. SERPINB6 was suggested

to inhibit trypsin-like proteases such as tryptase because of an Arg in the P1

position in its RSL. Apparently, SERPINB6 is abundantly expressed in human

MCs and is thought to regulate intracellular -tryptase (Strik et al., 2004).

SERPINB6 is relatively large (42kDa) and would not fit into the central cavity of

a tryptase tetramer. It was therefore suggested that SERPINB6 inhibits monomeric

active -tryptase. This is possible because active tryptase monomers may occur in

the granules as an intermediate in the formation of active tryptase tetramers

(Fukuoka & Schwartz, 2004). Moreover, several protein inhibitors that are unable

to inhibit active tryptase tetramers have been shown to inhibit active tryptase

monomers (Fajardo & Pejler, 2003a; Fukuoka & Schwartz, 2004). These include

BPTI (bovine pancreatic trypsin inhibitor), STI (soybean trypsin inhibitor),

antithrombin, and 2-macroglobulin.

Heparin antagonists

Heparin antagonists use a completely different mode of inhibition. This class of

inhibitors exploits the requirement of heparin for stabilization of the active

tryptase tetramer. Heparin antagonists may block tryptase irreversibly because

when the tetramer has been destabilized to dissociate in the absence of heparin, it

will not associate again unless more heparin is added. Antithrombin was the first

compound reported to partly inhibit tryptase by binding to heparin (Alter et al.,

1990). Later, lactoferrin, a cationic protein released by neutrophils, was shown to

potently inhibit tryptase (IC50 = 24 nM) (Elrod et al., 1997). In the same study,

lactoferrin was also demonstrated to block late-phase responses and airway hyper-

responsiveness in a sheep model of asthma. Recently, another study reported that

lactoferrin could be taken up into MCs and inhibit degranulation (He et al., 2003).

In this study, lactoferrin was a less potent inhibitor of tryptase; the IC50 value was

demonstrated to increase with increasing heparin concentrations and ranged from

69 nM to 3.1 mM. This indicates that lactoferrin is not acting as a tryptase

inhibitor in vivo but might instead have a role in regulating MC activation.

Myeloperoxidase, another cationic protein secreted from neutrophils, also inhibits

tryptase by displacement of heparin (Cregar et al., 1999). Further, protamine,

which is widely used in cardiovascular surgery to neutralize the anticoagulant

effect of heparin, has also been suggested to inhibit tryptase by the same

mechanism (Rice et al., 1998). In a recent study, synthetic polycationic peptides

were shown to have excellent inhibiting potency for recombinant I-tryptase (IC50

down to 1 nM) (Lundequist et al., 2003).
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Processing and activation

Active -like tryptases are stored in complex with heparin PG in the MC granule.

Like the other MC proteases, tryptase is synthesized as a precursor protein with an

N-terminal signal peptide followed by an activation peptide. Human protryptase

contains a 12 amino acid long activation peptide whereas the activation peptide of

mouse protryptase contains only 10 amino acids (Lutzelschwab et al. , 1997;

Vanderslice et al., 1990). In vitro studies of recombinant -tryptase produced in a

baculovirus/insect cell system have suggested a two-step process (Sakai, Ren &

Schwartz, 1996). The first step consists of an intermolecular autocatalytic cleavage

at Arg-3/Val-2, which is dependent on acidic pH and heparin. Apparently,

monomeric protryptase may have separate substrate specificity and cleaves other

protryptases but is unable to cleave small peptide substrates. In the second step,

dipeptidyl peptidase I (DPPI; also referred to as cathepsin C) completes the

processing to generate the mature monomer form of tryptase. Cleavage by DPPI

did not require heparin. However, heparin was found to be required to produce

enzymatically active tryptase (Sakai, Ren & Schwartz, 1996). In contrast,

recombinant mMCP-6 produced in insect cells seemed not to require heparin for

activation (Huang et al., 1998) whereas recombinant human tryptase produced

using the same insect cell system was found to require heparin for activation

(Huang et al., 2001). In vivo studies using mice lacking DPPI demonstrated that

tryptase is not solely dependent on DPPI for processing (Wolters et al., 2001).

The levels of active tryptase in the DPPI
-/-

 mice were diminished by 75%. This

indicates that another enzyme can compensate for DPPI or that an unknown

processing enzyme is affected by the lack of DPPI.
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SUMMARY OF PRESENT INVESTIGATION

Aim

The aim of this thesis was to define the activation mechanisms of MC tryptase.

Two closely related tryptases, mMCP-6 and human -tryptase, were studied.

Further, we wanted establish whether heparin has a role in tryptase activation and

how heparin and tryptase interact.

Results and discussion

Paper I. The activation mechanism of mMCP-6.

The fate of tryptase is determined in several ways by heparin, its companion in the

MC granule. Tryptase depends on heparin for stabilization of its tetrameric form

and its catalytic activity (Schwartz & Bradford, 1986) and heparin is crucial for the

storage of tryptase in the MC granule (Forsberg et al., 1999; Humphries et al.,

1999). Tryptase activation is divided into two parts. The first part is characterized

by proteolytic cleavage of the protryptase into the mature form. In vitro studies

using recombinant -tryptase suggest a two-step process consisting of heparin-

dependent autocatalytic cleavage followed by cleavage by DPPI (Sakai, Ren &

Schwartz, 1996). The assembly of inactive monomers into an active tetramer

characterizes the second part of tryptase activation. Although one study suggested

that mMCP-6 could be activated in the absence of heparin (Huang et al., 1998),

the role of heparin and the actual activation mechanism was not investigated in

detail. To address this issue, we decided to study the mouse tryptase, mMCP-6,

considered the murine counterpart of human -tryptase. A recombinant form of

mMCP-6 was produced, with an N-terminal histidine tag (for purification)

followed by an enterokinase cleavage site replacing the natural activation peptide.

The mammalian expression system, human 293 EBNA cells, provided high yields

of mMCP-6 protein. Efficient purification was obtained using Ni-NTA agarose

and after digestion with enterokinase, we obtained the mature monomeric form of

mMCP-6.
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Inactive monomer Active tetramer

??

Figure 6. Tryptase activation; the assembly of inactive monomers into an active
tryptase tetramer.

We found that heparin was required to interact with tryptase in an acidic

environment in order for enzymatic activity to develop. However, maximal

activity was obtained if the tryptase-heparin interaction was established at acidic

pH followed by transfer of the mixture to neutral pH before the substrate was

added. This indicated that when mMCP-6 had been activated, neutral pH enhanced

the substrate cleavage. Further, mMCP-6 bound strongly to heparin-Sepharose in

acidic pH, whereas binding was undetectable at neural pH. The effects of heparin

and pH were correlated to the ability of tryptase to form tetramers. Gel-filtration

experiments showed that in the absence of heparin, tryptase eluted as an inactive

monomer. Nevertheless, the presence of heparin at acidic pH, but not at neutral

pH, induced formation of an active tetramer. Furthermore, the potency of our

recombinant mMCP-6 to exert its effect in vivo was demonstrated by injection of

mMCP-6 into the mouse peritoneal cavity. Only heparin-activated mMCP-6

induced inflammation characterized by increased neutrophil influx.

The behavior of tryptase suggests how it may function in vivo. It is likely that it

becomes activated into forming tetramers by interacting with heparin inside acidic

MC granules or the trans-Golgi network. Upon MC degranulation, tryptase is

released into the neutral extracellular milieu where it is ready to exert its

proteolytical effect. The most likely explanation for the dependence on acidic pH

for tryptase activation is that histidines (pKa ~ 6.5), which become positively

charged at acidic pH, are involved in heparin binding. Together, the results

suggest that heparin plays a critical role in the activation and tetramerization of

mMCP-6.   
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Paper II: Heparin antagonists are potent inhibitors of mast cell

tryptase.

The critical role of heparin for tryptase activation indicates that displacement of

heparin may inactivate tryptase. In paper II, we investigated whether the

polycationic compounds, protamine and Polybrene, could be used as tryptase

inhibitors. Polybrene is a synthetic heparin antagonist that is used in the clinic for

the reversal of heparin therapy, whereas protamine is an Arg-rich protein involved

in packing of DNA in sperm and certain viruses (Brewer, Corzett & Balhorn,

1999). Kinetic studies showed that both heparin antagonists were potently

inhibiting mMCP-6 and human lung tryptase (IC50 values in the nM range). The

most likely cause of this effect is that the heparin antagonists compete with

tryptase for binding to heparin. When tryptase loses heparin, the tetramer may

destabilize, rapidly monomerize and lose its activity, resembling the events

occurring during spontaneous inactivation in the absence of an inhibitor (Schechter

et al., 1995). Accordingly, when active tryptase in complex with heparin is co-

injected with a heparin antagonist on a gel chromatography column, tryptase elutes

as an inactive monomer. This suggests a non-competitive mode of inhibition,

because heparin-antagonists would bind heparin rather than occupying the active

site. Correspondingly, Polybrene inhibited tryptase with non-competitive kinetics.

In contrast, protamine displayed competitive inhibition kinetics. This may be due

to the high content of arginine in protamine, and that arginine side-chains may

interact with the active sites. However, both Polybrene and protamine were

sensitive to increasing heparin concentrations, which reduced their potency. The

reason for the sensitivity of protamine, despite competitive kinetics, may be that

protamine binds free heparin but fails to challenge tryptase for its associated

heparin and instead interacts with the active site of tryptase at low heparin

concentration. Further, tryptase inactivated with Polybrene seemed to be mostly

resistant to reactivation with heparin. In contrast, when tryptase was inhibited by

protamine, all activity could be regained by addition of excess heparin.

Spontaneous inactivation is proposed to take place through several reversible steps

ending with reactivable monomers and proceeding to an irreversible step to

monomers that cannot be reactivated (Selwood, Mccaslin & Schechter, 1998). The

reason for the irreversibility of Polybrene may be that its high potency makes the

tryptase tetramers monomerize to a stage were they can’t be reactivated.

Consequently, protamine-inactivated tryptase can be reactivated since protamine is

unable to compete with the tryptase-bound heparin and tryptase therefore never

dissociates completely from heparin.

In comparison, both lactoferrin, a previously reported heparin antagonist and

inhibitor of human tryptase (Elrod et al., 1997), and APC 366, an active site-

directed inhibitor (Clark et al., 1995), displayed no or only moderate inhibition of

mMCP-6 and human lung tryptase. Interestingly, APC-366 displayed different Ki

values over time for human tryptase, but not for mMCP-6. After 40 minutes

incubation, the Ki was in the millimolar range whereas after four hours the Ki had

decreased 500 times to approximately 0.5 µM. The reason for this behavior might

be explained by subtle differences in the active sites of mouse and human tryptase

that make human tryptase more susceptible for the reshaped structure of APC-366

appearing after four hours of incubation. However, APC-366 also displayed an
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inhibitory effect on MC chymase. This may be exlained by the interaction of an

aromatic 1-hydroxy-2-naphthoyl group in the active site of chymase, in contrast to

the inhibition of trypsin-like proteases, which involve interaction of an arginine-

like structure in APC-366 with the Asp189 of the S1 pocket. Thus, that APC-366

can reduce asthmatic symptoms in sheep and pig models (Clark et al., 1995;

Sylvin et al., 2002) may be related to inhibition of chymase as well as tryptase.

Paper III: Structural requirements for heparin-induced activation and

identification of active tryptase monomers.

In paper III, we studied what the structures that determine the capacity of heparin

to activate mMCP-6. We found that most other structurally related, but less

sulfated compounds e.g. heparan sulfate, were unable to substitute for heparin.

However, the highly negatively charged synthetic compound, dextran sulfate,

efficiently activated tryptase. Further, structurally modified heparins, in which the

N-sulfate, 2-O sulfate or 6-O sulfate groups were selectively removed, were all less

effective than unmodified heparin. These results suggest that heparin interacts

through its high negative charge density rather than through any specific structural

motif. Moreover, experiments using heparin oligosaccharides of defined sizes (up

to 26 saccharide units) showed that the heparin-tryptase interaction was highly

size-dependent. Generally, the longer the heparin chain, the better its ability to

induce tetramerization, however, intact heparin remained superior. Although short

oligosaccharides consisting of 8-10 units were able to bind to tryptase, they were

highly inefficient in inducing tetramerization. Thus, heparin binding does not by

itself induce tetramerization. Furthermore, tryptase activation displayed a bell-

shaped dose-response curve. Together, these results suggest a model for tetramer

formation that involves bridging of tryptase monomers by heparin or other highly

sulfated polysaccharides of sufficient chain length.

A completely novel finding was the identification of an active tryptase

monomer. Short heparin oligosaccharides that bound to heparin did not produce

tetramers but instead induced activation of monomeric tryptase. To ensure that the

activities found in the monomer elution position really were due to active

monomers and not tetramers that were formed after the chromatography step, the

fractions were pooled and re-injected in the same column. The monomer fractions

were again recovered in the monomer position. The presence of an active monomer

was further proven by BPTI, which inhibited the active monomers but not the

active tetramers. Moreover, the ECM component, fibronectin, which was

recognized as a substrate for tryptase in earlier studies (Kaminska et al., 1999;

Lohi, Harvima & Keski-Oja, 1992), was found to be a substrate for active

monomers but not for active tetramers.
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Figure 7. Model of tryptase activation. A) The heparin-dependent mechanism of
tetramer formation. B) Short heparin oligosaccharides are unable to bridge two tryptase
monomers but instead enable activation of monomeric tryptase.

Paper IV: Heparin binding is mediated by histidines in mMCP-6.

In paper IV, we wanted to test our hypothesis that histidines were involved in

heparin binding. Our approach was to use site-directed mutagenesis of histidine

residues that were selected on the basis of sequence alignments among pH-

dependent tryptases and molecular modeling of the mMCP-6 structure from the

crystal structure of human -tryptase (Pereira et al., 1998). Out of 13 histidines,

we selected four (H35, H106, H108 and H238) that were conserved and exposed

on the molecular surface.

Nine mutants were prepared: four single, two double, two triples and one

quadruple. All except the quadruple mutant were expressed in high yields.

Unfortunately, the lysosomal pathway of the 293 EBNA cells degraded the

quadruple mutant. The single mutants displayed subtle defects in activation,

tetramerization and heparin binding. Of the single mutants, H106A was most

affected in its interaction with heparin. H106 is positioned closest to the interface

between the subunits, indicating that this region may be particularly important for

productive heparin binding i.e. that leading to tetramerization. Importantly, when

several mutations were combined, large defects were found in all studied

parameters. The triple mutants displayed the most dramatic defects due to the loss

of three histidines in each monomer, which causes a reduction of positive charges

from sixteen to four in each tryptase tetramer. Moreover, the triple mutants also

showed tendencies to misfold into inactive aggregates, although tryptophane

fluorescence measurements indicated that the mutations did not cause any changes

in overall conformation of the mMCP-6 monomer. It is likely that the quadruple

mutant deficient in all its surface-exposed histidines is so defective that it is not

secreted and is instead routed to intracellular degradation.



38

Figure 8. Sequence alignment and model of the mMCP-6 tetramer. A) Sequence
alignment of mature tryptases from various species. Mutated His residues are labeled in
blue and nonmutated His residues are shown in magenta. B) A surface representation of
the mMCP-6 model. C, D) Electrostatic potential surface of the mMCP-6 model at
neutral pH (C) and acidic pH (D).

Paper V. Activation mechanisms for human I- and II-tryptase.

In order to confidently use mouse models of human MC-related diseases and to

assess the potential role of tryptase, it is important to ensure that the basic

biochemical behavior of mouse tryptase and its human counterpart, -tryptase, are

similar. We therefore addressed the mechanisms of activation for human I- and

II- tryptase. These tryptases differ in only one amino acid: Asn102 in I-tryptase

versus Lys102 in II-tryptase. Asn102 is part of an N-glycosylation site and as a

consequence, I-tryptase is glycosylated at Asn102 whereas II-tryptase lacks the

corresponding glycosylation. We could therefore assess whether glycosylation at

Asn102 was involved in the activation mechanism. Although an earlier study did

show that recombinant human -tryptase needed heparin for its activation (Huang

et al., 2001), a detailed study of the mechanism of activation and the structural

requirement was lacking. We constructed recombinant human I- and II-tryptase

using the same system for expression and purification as previously used for

mMCP-6.
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We found that heparin was crucial for the activation of I- and II-tryptase. A

preference for acidic pH for activation of I-tryptase, closely resembling the

requirements for activation of mMCP-6 was also demonstrated. However, unlike

mMCP-6, heparin-dependent tryptase activation was also detectable at neutral pH.

This indicates that histidines are important for heparin binding in human I-

tryptase, but not as crucial as for mMCP-6. In contrast, II-tryptase was much less

dependent on acidic pH than I-tryptase. Nevertheless, both -tryptases showed

similar bell-shaped dose-response curves and approximately equally high affinity

for heparin. This means that the reason for the lower degree pH dependence of II-

tryptase is unclear and cannot be explained by lower affinity for heparin.

Moreover, gel filtration analysis demonstrated that when II-tryptase was activated

with heparin it showed tendencies to misfold into inactive aggregates, whereas

activation of I-tryptase resulted in only active tetramers. This indicated that

glycosylation may play a role in the assembly of tryptase tetramers.

The heparin-induced activation of the human -tryptases was dependent on the

size and high anionic charge density of the activator, and closely resembled the

structural requirements in terms of heparin for mMCP-6. We also found evidence

that the tryptases formed active monomers in the presence of low molecular

weight heparin. Together, we found that the mechanism for activation of human -

tryptase was highly similar to that of mMCP-6. Thus, results obtained from

studies of mouse tryptase appear to be highly relevant for the situation in humans

and vice versa. This indicates that the mouse system is a good system for

analyzing the biological role of tryptase and that mouse models of human MC-

related diseases might be highly relevant.

In conclusion, we have proven the significance and nature of the heparin-tryptase

interaction, shown a new mode of tryptase inhibition, constructed a model for

formation of the active tryptase tetramer, demonstrated the presence of an active

tryptase monomer and shown that mMCP-6 and human -tryptase are very similar

proteases as regarding their modes of activation.
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Future perspectives

Our studies have revealed that the mouse tryptase, mMCP-6, and human -

tryptase show similar properties and that mouse models may be used for searching

for the biological role of tryptase. Clearly, if a knockout mouse for mMCP-6 were

to be constructed, it would be very interesting to employ various inflammation

models to study the biological effects of tryptase in vivo. However, in recent years,

many new human MC tryptases have been discovered. Some, such as /TMT

tryptase, have a corresponding mouse variant (mTMT) whereas the mouse variants

of other human tryptases such as - and -tryptase may be missing. The near

future will be important to judge which of these new tryptases are functional and

account for the effects that have been discovered using purified tryptase. To do

these studies, it will be important to make recombinant tryptases and characterize

their basic biochemical behavior.

In a recent study, the possibility of the existence of active monomers in vivo

was addressed (Fajardo & Pejler, 2003a). It was demonstrated that active tryptase

monomers could be formed from dissociated tetramers under conditions that

resemble the in vivo  conditions to which tryptase is exposed after MC

degranulation. This means that the discovery of the active tryptase monomer,

recently confirmed by another major group in the field (Fukuoka & Schwartz,

2004), will encourage further characterization of the biological functions that can

be attributed specifically to the active monomer, the active tetramer and to both in

combination. Interestingly, both active forms of mMCP-6 mediated activation of

PAR-2 (J. Hallgren, R. Pike, G. Pejler; unpublished data) and both active forms

of human -tryptase mediated cleavage of fibrinogen (Fajardo & Pejler, 2003a),

whereas fibronectin is specifically cleaved by the active monomer (paper III)

(Fajardo & Pejler, 2003a). The possibility of active tryptase monomers in vivo is

of consequence not only to scientists wishing to dissect the true biological role(s)

of MC tryptases, but also to those who want to find potent tryptase inhibitors to

be used as medical treatment. For some clinical conditions, it may be important to

inhibit only one active form, whereas in most cases it may be critical that the

inhibitors can potently inhibit both forms. As the heparin antagonist, Polybrene,

inhibits both forms of active tryptase (Fajardo & Pejler, 2003a), it may be

important to further investigate the potential use of heparin antagonists.
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Populärvetenskaplig sammanfattning

Mastcellen är en typ av cell som ingår i kroppens immunförsvar. Mastceller

hjälper till att försvara oss mot bakterier och parasiter. Tyvärr är mastceller inte

bara till hjälp för oss, utan det har visat sig att de är involverade i flera olika

sjukdomar t.ex. allergier och astma. Inuti mastcellen finns en mängd små kapslar,

s.k. granula, som innehåller en hel arsenal av olika inflammatoriska ämnen. Det är

dessa ämnen som ibland försvarar oss och ibland gör oss sjuka. När mastcellen

aktiveras töms innehållet i granula, de inflammatoriska substanserna, ut i kroppen.

Ett av dessa inflammatoriska ämnen är det proteolytiska enzymet tryptas. Ett

proteolytiskt enzym är ett protein som klyva andra proteiner i mindre bitar utan att

själv påverkas. Tryptas är aktiv som en tetramer. Det betyder att för att tryptas ska

vara aktivt så måste fyra stycken identiska tryptasmolekyler sitta ihop. Eftersom

tryptas medverkar i vissa mastcells-relaterade sjukdomar är det många som forskar

för hitta bra tryptasinhibitorer. En inhibitor är en molekyl som blockerar ett

enzyms aktivitet.

Den här avhandlingen visar att för att tryptas ska kunna fungera som enzym

behöver tryptas aktiveras av en annan molekyl, nämligen heparin. Heparin finns

också inne i mastcellens granula och är ett sorts negativt laddat socker. Vi har

visat att för att tryptas ska bli aktivt måste det interagera med heparin i en sur

miljö. Eftersom vi fann att tryptasets aktivitet var kritiskt beroende av heparin,

ville vi testa om man kunde blockera tryptasets aktivitet genom att förhindra att

heparin binder till tryptas. Heparinantagonister är positivt laddade molekyler och

binder själva starkt till heparin. Vi visade att heparinantagonister är effektiva

tryptasinhibitorer. Vad är det då som gör heparin till en så bra tryptasaktivator? Vi

kom fram till att det är längden på heparinkedjan och dess mycket negativa

laddning som avgör. Vi fann att heparinkedjorna måste vara tillräckligt långa för

att kunna binda till två tryptasmolekyler samtidigt och på det sättet binda ihop

tetrameren och aktivera tryptaset. Dessutom hittade vi en ny aktiv form av tryptas,

en aktiv tryptasmonomer, d v s en molekyl tryptas som blivit aktiv på egen hand.

Vi visade att aktiva tryptasmonomerer uppstår när man aktiverar tryptas med korta

kedjor av heparin (som inte förmår att brygga över två tryptasmolekyler).

Vilka delar av tryptas binder till heparin? Liksom andra proteiner är tryptas

uppbyggd av olika sorters aminosyror. Eftersom vi visste att heparinbindningen

måste ske vid lågt pH och att den var av elektrostatisk natur så misstänkte vi att

en viss sorts aminosyror som kallas histidiner var inblandade. Det som

kännetecknar aminosyran histidin är att det är den enda aminosyran som är positivt

laddad vid lågt pH men oladdad vid neutralt pH. Därför kan histidiner bara binda

till den negativt laddade heparinkedjan vid lågt pH. För att studera detta

konstruerade vi tryptasmutanter, d v s varianter av tryptas där någon eller några

aminosyror är förändrade. Våra tryptasmutanter förändrades så att en eller flera

histidiner var muterade till den neutrala aminosyran alanin. Vi fann fyra histidiner

som var speciellt viktiga för tryptasets förmåga att binda till heparin. I de första

fyra studierna använde vi oss av ett rekombinant mustryptas, d v s vi tillverkade

mustryptaset utifrån dess DNA-sekvens. För att kunna studera olika mänskliga

sjukdomar i möss är det viktigt att undersöka att de grundläggande biokemiska
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mekanismerna är lika för motsvarande enzym i mus och människa. I den femte

studien visade vi att humant tryptas blir aktivt på samma sätt som mustryptas.

I denna avhandling har vi visat hur och varför tryptas blir aktiverat och hittat ett

nytt sätt att inhibera tryptas, samt att tryptas även kan vara aktivt som monomer.

Dessutom har vi visat att att heparin via sin negativa laddning binder till positivt

laddade histidiner i tryptas och att mus- och humantryptas aktiveras på liknande

sätt.
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